6. Referencias y bibliografía
- Atkinson CT, Woods KL, Dusek RJ, Sileo LS, Iko WM. 1995. Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected Iiwi (Vestiaria coccinea). Parasitology 111 Suppl:S59-69. doi: 10.1017/s003118200007582x.
- Benning TL, LaPointe D, Atkinson CT, Vitousek PM. 2002. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system. Proc Natl Acad Sci U S A. 99:14246-9. doi: 10.1073/pnas.162372399.
- Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, Figuerola J, Porro TM, Rius C, Larrauri A, Gómez-Barroso D. 2020. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. Environ Res.191:110038. doi: 10.1016/j.envres.2020.110038.
- Caminade C, McIntyre MK, Jones AE. 2016 Climate Change and Vector-borne Diseases: Where Are We Next Heading? J Infect Dis. 214:1300-1301. doi: 10.1093/infdis/jiw368.
- Caminade C, McIntyre KM, Jones AE. 2019. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci. 1436:157-173. doi: 10.1111/nyas.13950.
- Caminade C, Turner J, Metelmann S, Hesson JC, Blagrove MS, Solomon T, Morse AP, Baylis M. 2017. Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc Natl Acad Sci U S A. 114:119-124. doi: 10.1073/pnas.1614303114. Epub 2016 Dec 19. Erratum in: Proc Natl Acad Sci U S A. Feb 14;114(7):E1301-E1302.
- Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J. 2015. Climate change and vector-borne diseases: what are the implications for public health research and policy? Philos Trans R Soc Lond B Biol Sci. 370: 20130552. doi: 10.1098/rstb.2013.0552.
- Castaño, F. Martínez, J., Lozano, M., Merino, S. 2018. Experimental manipulation of temperature reduces ectoparasites in nests of blue tits (Cyanistes caeruleus). Journal of Avian Biology, 49: e01695. doi: 10.1111/jav.01695.
- Castaño-Vázquez, F., Schummb, Y. R., Benteleb, A. Quillfeldt, P., Merino, S. 2021. Experimental manipulation of cavity temperature produces differential effects on parasite abundances in blue tit nests at two different latitudes. International Journal for Parasitology: Parasites and Wildlife, 14: 287-297. https://doi.org/10.1016/j.ijppaw.2021.03.010
- Castaño-Vázquez, F., Merino, S. 2022. Differential effects of environmental climatic variables on parasite abundances in blue tit nests during a decade. Integrative Zoology, 17: 511-529. doi: 10.1111/1749-4877.12625
- Chapa-Vargas, L., Matta, N. E., Merino, S. 2020. Effects of ecological gradients on tropical avian haemoparasites. Capítulo 10 En: Avian malaria and related parasites in the tropics: ecology, evolution, and systematics. Editado por D. Santiago-Alarcon y A. Marzal. Springer: págs: 349-377.
- Cizauskas, C. A., Carlson, C. J., Burgio, K. R., Clements, C. F., Dougherty, E. R., Harris, N. C., Phillips, A. J. (2017). Parasite vulnerability to climate change: An evidence-based functional trait approach. Royal Society Open Science. 4. 10.1098/rsos.160535.
- Cottontail VM, Wellinghausen N, Kalko EK. 2009. Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panamá. Parasitology. 136:1133-45. doi: 10.1017/S0031182009990485.
- Diuk-Wasser, M.A., Brown, H.E., Andreadis, T.G., Fish, D., 2006. Modeling the spatial distribution of mosquito vectors for West Nile virus in Connecticut, USA. Vector Borne Zoonotic Dis. 6 , 283–295.
- Eggert, L.S., Terwilliger, L.A., Woodworth, B.L., Hart, P.J., Palmer, D. & Fleischer, R.C. (2008). Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria. BMC Evol. Biol. 8, 315. https://doi.org/10.1186/1471-2148-8-315
- Ewald, P. W. 1994. Evolution of Infectious Disease. Oxford University Press, 320 páginas.
- Ewing DA, Cobbold CA, Purse BV, Nunn MA, White SM. 2016. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J Theor Biol. 400:65-79. doi: 10.1016/j.jtbi.2016.04.008.
- Ferraguti M, Martínez-de la Puente J, Jiménez-Clavero MÁ, Llorente F, Roiz D, Ruiz S, Soriguer R, Figuerola J. 2021. A field test of the dilution effect hypothesis in four avian multi-host pathogens. PLoS Pathog. 17:e1009637. doi: 10.1371/journal.ppat.1009637.
- Ferraguti, M., Martinez-de la Puente, J., Roiz, D., Ruiz, S., Soriguer, R., Figuerola, J., 2016. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002.
- Fischer D, Thomas SM, Suk JE, Sudre B, Hess A, Tjaden NB, Beierkuhnlein C, Semenza JC. 2013. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus' temperature requirements. Int J Health Geogr. 12:51. doi: 10.1186/1476-072X-12-51.
- Foster JT, Woodworth BL, Eggert LE, Hart PJ, Palmer D, Duffy DC, Fleischer RC. 2007. Genetic structure and evolved malaria resistance in Hawaiian honeycreepers. Mol Ecol. 16:4738-46. doi: 10.1111/j.1365-294X.2007.03550.x.
- Garamszegi, L.Z. (2011). Climate change increases the risk of malaria in birds. Global Change Biology, 17: 1751-1759. https://doi.org/10.1111/j.1365-2486.2010.02346.x
- García del Río, M., Cantarero, A. Carmona, Castaño Vázquez, F., Merino, S. 2022. La manipulación experimental de la humedad relativa y la temperatura redujo los ectoparásitos y afectó a la condición corporal de los polluelos en nidos de herrerillo común (Cyanistes caeruleus). Comunicaciones orales al 25 Congreso Español de Ornitología, Libro de resúmenes página 30.
- Garza M, Feria Arroyo TP, Casillas EA, Sanchez-Cordero V, Rivaldi CL, Sarkar S. 2014. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. PLoS Negl Trop Dis. 8: e2818. doi: 10.1371/journal.pntd.0002818.
- Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. 2000. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ.;78:1136-47.
- Guarneri, A.A., Lazzari, C., Diotaiuti, L. and Lorenzo, M.G. (2002). The effect of relative humidity on the behaviour and development of Triatoma brasiliensis. Physiological Entomology, 27: 142-147. https://doi.org/10.1046/j.1365-3032.2002.00279.x
- Hertig, E. 2019. Distribution of Anopheles vectors and potential malaria transmission stability in Europe and the Mediterranean area under future climate change. Parasit Vectors. 12:18. doi: 10.1186/s13071-018-3278-6.
- Hopper JV, Kuris AM, Lorda J, Simmonds SE, White C, Hechinger RF. 2014. Reduced parasite diversity and abundance in a marine whelk in its expanded geographical range. J. Biogeogr. 41, 1674–1684. doi:10.1111/jbi.12329
- Hunter, P.R. 2003. Climate change and waterborne and vector-borne disease. J. Appl. Microbiol. 94(Suppl.): 37S–46S.
- Kelly, D. W., Paterson, R. A., Townsend, C. R., Poulin, R., & Tompkins, D. M. (2009). Parasite Spillback: A Neglected Concept in Invasion Ecology? Ecology, 90(8), 2047–2056. http://www.jstor.org/stable/25592721. Kraemer, M.U.G., O.J. Brady, A. Watts, et al. 2017. Zika virus transmission in Angola and the potential for further spread to other African settings. Trans. R. Soc. Trop. Med. Hyg. 111: 527–529.
- Liu-Helmersson J, Quam M, Wilder-Smith A, Stenlund H, Ebi K, Massad E, Rocklöv J. 2016. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe. EBioMedicine. 7:267-77. doi: 10.1016/j.ebiom.2016.03.046.
- Leighton, P.A., Koffi, J.K., Pelcat, Y., Lindsay, L.R. and Ogden, N.H. (2012). Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. Journal of Applied Ecology, 49: 457-464. https://doi.org/10.1111/j.1365-2664.2012.02112.x
- Luis AD, Kuenzi AJ, Mills JN. 2018. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host-pathogen system through competing mechanisms. Proc Natl Acad Sci U S A. 115:7979-7984. doi: 10.1073/pnas.1807106115.
- Martínez, J., Merino, S. 2011. Host-parasite interactions under extreme climatic conditions. Current Zoology, 57: 390-405.
- Merino, S. 2019. Host-parasite interactions and climate change. Chapter 14 En: Effects of Climate Change on Birds. 2nd Edition. Editado por P. O. Dunn y A. P. Møller. Oxford University Press: 187-198.
- Merino S, Potti J, 1996. Weather dependent effects of ectoparasites on their bird host. Ecography 19: 107–113.
- Ogden NH, Barker IK, Francis CM, Heagy A, Lindsay LR, Hobson KA. 2015. How far north are migrant birds transporting the tick Ixodes scapularis in Canada? Insights from stable hydrogen isotope analyses of feathers. Ticks Tick Borne Dis. 6: 715-20. doi: 10.1016/j.ttbdis.2015.06.004.
- Ollerenshaw, C.B. & W.T. Rollands. 1959. A method of forecasting the incidence of fascioliasis in Anglesey. Vet. Rec. 71: 591–598.
- Olmos, M.B., & Bostik, V. (2021). Climate change and human security - the proliferation of vector-borne diseases due to climate change. MMSL, 90: 100-106. doi: 10.31482/mmsl.2021.011
- Ostfeld, R.S. & Keesing, F. (2000) The function of biodiversity in the ecology of vector-borne zoonotic diseases. Canadian Journal of Zoology, 78, 2061–2078.
- Otranto, D., Capelli, G. & Genchi, C. 2009. Changing distribution patterns of canine vector borne diseases in Italy: leishmaniosis vs. dirofilariosis. Parasites Vectors 2 (Suppl 1), S2. https://doi.org/10.1186/1756-3305-2-S1-S2
- Phillips BL, Kelehear C, Pizzatto L, Brown GP, Barton D, Shine R. 2010. Parasites and pathogens lag behind their host during periods of host range advance. Ecology. 91: 872-881. doi: 10.1890/09-0530.1.
- Randolph, S. E., Miklisová, D., Lysy, J., Rogers, D. J., & Labuda, M. (1999). Incidence from coincidence: Patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology, 118: 177-186. doi:10.1017/S0031182098003643
- Reisen WK, Fang Y, Martinez VM. 2006. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol. 43: 309-17. doi: 10.1603/0022-2585.
- Rizzoli A, Tagliapietra V, Cagnacci F, Marini G, Arnoldi D, Rosso F, Rosà R. 2019. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int J Parasitol Parasites Wildl. 9:394-401. doi: 10.1016/j.ijppaw.2019.05.011.
- Rocklöv, J., Dubrow, R. 2020. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol 21, 479–483. https://doi.org/10.1038/s41590-020-0648-y
- Rosà R, Tagliapietra V, Manica M, Arnoldi D, Hauffe HC, Rossi C, Rosso F, Henttonen H, Rizzoli A. 2019. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Int J Parasitol. 49:779-787. doi: 10.1016/j.ijpara.2019.05.006.
- Stringer A, Linklater W. 2015. Host density drives macroparasite abundance across populations of a critically endangered megaherbivore. Oecologia 179, 201–207. doi:10.1007/s00442-015-3319-1
- Sumbria, D., Singla, L. D. 2017. Thwack of Worldwide Weather Transformation on Vector and Vector-Borne Parasitic Infections. ARC Journal of Animal and Veterinary Sciences 3(2):1-10. doi: dx.doi.org/ 10.20431/2455-2518.0302001
- Tjaden, N., Suk, J. E., Fischer, D., Thomas, S., Beierkuhnlein, C., Semenza, J. C. 2017.
- Modelling the effects of global climate change on Chikungunya transmission in the 21st century. Scientific Reports. 7: 3813. https://doi.org/10.1038/s41598-017-03566-3
- Tompkins, D. M. & D. M. Gleeson (2006) Relationship between avian malaria distribution and an exotic invasive mosquito in New Zealand, Journal of the Royal Society of New Zealand, 36: 51-62, DOI: 10.1080/03014223.2006.9517799
- Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM. 2003. Introduced species and their missing parasites. Nature 421, 628–630. doi:10.1038/nature01346
- Townroe S, Callaghan A. 2014. British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology. PLoS One. 9:e95325. doi: 10.1371/journal.pone.0095325.
- van Riper, C., III, van Riper, S.G., Goff, M.L. and Laird, M. (1986). The Epizootiology and Ecological Significance of Malaria in Hawaiian Land Birds. Ecological Monographs, 56: 327-344. https://doi.org/10.2307/1942550
- Warner, R.E. 1968. The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70:101-20.
- Woodworth BL, Atkinson CL, LaPointe DA, Hart PJ, Spiegel CS, Tweed EJ, Henneman C, LeBrun J, Denette T, DeMots R, Kozar KL, Triglia D, Lease D, Gregor A, Smith T, Duffy D. 2005. Host population persistence in the face of introduced vector-borne diseases: Hawaii Amakihi and avian malaria. Proc Natl Acad Sci USA,102:1531-1536.
- Zhou XN, Wang LY, Chen MG, Wu XH, Jiang QW et al., 2005. The public health significance and control of schistosomiasis in China: Then and now. Acta Trop. 96: 97–105.