- Abraham, E. G., & Jacobs-Lorena, M. (2004). Mosquito midgut barriers to malaria parasite development. Insect biochemistry and molecular biology, 34(7), 667-671.
- Aliota, M. T., Peinado, S. A., Velez, I. D., & Osorio, J. E. (2016). The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Scientific reports, 6, srep28792.
- Barillas-Mury, C., Wizel, B., & Han, Y. S. (2000). Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity and vaccine development. Insect biochemistry and molecular biology, 30(6), 429-442.
- Beerntsen, B. T., James, A. A., & Christensen, B. M. (2000). Genetics of mosquito vector competence. Microbiology and molecular biology reviews, 64(1), 115-137.
- Black, W. C., IV, and C. G. Moore. 1996. Population biology as a tool for studying vector borne diseases, (pp. 393–416). In The biology of disease vectors. Niwot, Colorado: University Press of Colorado.
- Chouin-Carneiro, T., David, M. R., de Bruycker Nogueira, F., Dos Santos, F. B., & Lourenco-de-Oliveira, R. (2020). Zika virus transmission by Brazilian Aedes aegypti and Aedes albopictus is virus dose and temperature-dependent. PLoS neglected tropical diseases, 14(9), e0008527.
- Ciota, A. T., Bialosuknia, S. M., Zink, S. D., Brecher, M., Ehrbar, D. J., Morrissette, M. N., & Kramer, L. D. (2017). Effects of Zika virus strain and Aedes mosquito species on vector competence. Emerging infectious diseases, 23(7), 1110.
- Cohuet, A., Harris, C., Robert, V., & Fontenille, D. (2010). Evolutionary forces on Anopheles: what makes a malaria vector?. Trends in parasitology, 26(3), 130-136.
- Dubrulle, M., Mousson, L., Moutailler, S., Vazeille, M., & Failloux, A. B. (2009). Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PloS one, 4(6), e5895.
- Dutra, H. L. C., Rocha, M. N., Dias, F. B. S., Mansur, S. B., Caragata, E. P., & Moreira, L. A. (2016). Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell host & microbe, 19(6), 771-774.
- Evans, M. V., Dallas, T. A., Han, B. A., Murdock, C. C., & Drake, J. M. (2017). Data-driven identification of potential Zika virus vectors. elife, 6, e22053.
- Ferguson, H. M., & Read, A. F. (2002). Why is the effect of malaria parasites on mosquito survival still unresolved? Trends in parasitology, 18(6), 256-261.
- Folly, A. J., Dorey-Robinson, D., Hernández-Triana, L. M., Ackroyd, S., Vidana, B., Lean, F. Z., ... & Johnson, N. (2021). Temperate conditions restrict Japanese encephalitis virus infection to the mid-gut and prevents systemic dissemination in Culex pipiens mosquitoes. Scientific reports, 11(1), 1-10.
- Giron, S., Franke, F., Decoppet, A., Cadiou, B., Travaglini, T., Thirion, L., ... & Leparc-Goffart, I. (2019). Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Eurosurveillance, 24(45), 1900655.
- Gutiérrez-López, R. (2018). Impact of the interactions between hosts vectors and pathogens on the transmission of avian malaria and flavivirus by mosquitoes. Tesis de Doctorado. Universidad de Sevilla, Sevilla, España.
- Gutiérrez-López, R., Bialosuknia, S. M., Ciota, A. T., Montalvo, T., Martínez-de la Puente, J., Gangoso, L., ... & Kramer, L. D. (2019). Vector competence of Aedes caspius and Ae. albopictus mosquitoes for Zika virus, Spain. Emerging infectious diseases, 25(2), 346.
- Gutiérrez-López, R., Figuerola, J., & Martínez-de la Puente, J. (2023). Methodological procedures explain observed differences in the competence of European populations of Aedes albopictus for the transmission of Zika virus. Acta Tropica, 237, 106724.
- Hardy, J. L., Houk, E. J., Kramer, L. D., & Reeves, W. C. (1983). Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annual review of entomology, 28(1), 229-262.
- Heitmann, A., Jansen, S., Lühken, R., Leggewie, M., Badusche, M., Pluskota, B., ... & Tannich, E. (2017). Experimental transmission of Zika virus by mosquitoes from central Europe. Eurosurveillance, 22(2), 30437.
- Heitmann, A., Jansen, S., Lühken, R., Leggewie, M., Schmidt-Chanasit, J., & Tannich, E. (2018). Forced salivation as a method to analyze vector competence of mosquitoes. JoVE (Journal of Visualized Experiments), (138), e57980.
- Hughes, G. L., Koga, R., Xue, P., Fukatsu, T., & Rasgon, J. L. (2011). Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS pathogens, 7(5), e1002043.
- Hurlbut, H. S. (1966). Mosquito salivation and virus transmission. American Journal of Tropical Medicine and Hygiene, 15(6, Pt. 1), 989-93.
- Ishino, T., Orito, Y., Chinzei, Y., & Yuda, M. (2006). A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Molecular microbiology, 59(4), 1175-1184.
- Kilpatrick, A. M., Kramer, L. D., Jones, M. J., Marra, P. P., & Daszak, P. (2006). West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS biology, 4(4), e82.
- LaPointe, D. A., Goff, M. L., & Atkinson, C. T. (2010). Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai'i. Journal of parasitology, 96(2), 318-324.
- Leggett, H. C., Buckling, A., Long, G. H., & Boots, M. (2013). Generalism and the evolution of parasite virulence. Trends in ecology & evolution, 28(10), 592-596.
- Martínez-de la Puente, J., Muñoz, J., Capelli, G., Montarsi, F., Soriguer, R., Arnoldi, D., et al., (2015). Avian malaria parasites in the last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy. Malaria journal, 14(1), 32.
- Molina-Cruz, A., Garver, L. S., Alabaster, A., Bangiolo, L., Haile, A., Winikor, J., et al., (2013). The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system. Science, 340(6135), 984-987.
- Muñoz, J., Ruiz, S., Soriguer, R., Alcaide, M., Viana, D. S., Roiz, D., et al., (2012). Feeding patterns of potential West Nile virus vectors in south-west Spain. PloS one, 7(6), e39549.
- Ohm, J. R., Baldini, F., Barreaux, P., Lefevre, T., Lynch, P. A., Suh, E., et al., (2018). Rethinking the extrinsic incubation period of malaria parasites. Parasites & vectors, 11(1), 178.
- Palinauskas, V., Žiegytė, R., Iezhova, T. A., Ilgūnas, M., Bernotienė, R., & Valkiūnas, G. (2016). Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite. International journal for parasitology, 46(11), 697-707.
- Povelones, M., Waterhouse, R. M., Kafatos, F. C., & Christophides, G. K. (2009). Leucinerich repeat protein complex activates mosquito complement in defense against Plasmodium parasites. Science, 324(5924), 258-261.
- Ramirez, J. L., Souza-Neto, J., Cosme, R. T., Rovira, J., Ortiz, A., Pascale, J. M., & Dimopoulos, G. (2012). Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS neglected tropical diseases, 6(3), e1561.
- Siden-Kiamos, I., Ecker, A., Nybäck, S., Louis, C., Sinden, R. E., & Billker, O. (2006). Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Molecular microbiology, 60(6), 1355-1363.
- Smith, R. C., Vega-Rodríguez, J., & Jacobs-Lorena, M. (2014). The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Memórias do Instituto Oswaldo Cruz, 109(5), 644-661.
- Takken, W., & Verhulst, N. O. (2013). Host preferences of blood-feeding mosquitoes. Annual review of entomology, 58, 433-453.
- Tesla, B., Demakovsky, L. R., Mordecai, E. A., Ryan, S. J., Bonds, M. H., Ngonghala, C. N., ... & Murdock, C. C. (2018). Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proceedings of the Royal Society B, 285(1884), 20180795.
- Turell, M. J., Linthicum, K. J., Patrican, L. A., Davies, F. G., Kairo, A., & Bailey, C. L. (2008). Vector competence of selected African mosquito (Diptera: Culicidae) species for Rift Valley fever virus. Journal of medical entomology, 45(1), 102-108.
- Valkiūnas, G. (2005). Avian malaria parasites and other haemosporidia. Boca Raton: CRC press.
- Vaughan, J. A., & Turell, M. J. (1996). Facilitation of Rift Valley fever virus transmission by Plasmodium berghei sporozoites in Anopheles stephensi mosquitoes. The American journal of tropical medicine and hygiene, 55(4), 407-409.
- Weger-Lucarelli, J., Rückert, C., Chotiwan, N., Nguyen, C., Garcia Luna, S. M., Fauver, J. R., ... & Ebel, G. D. (2016). Vector competence of American mosquitoes for three strains of Zika virus. PLoS neglected tropical diseases, 10(10), e0005101.
- Woodring, J. L., S. Higgs, and B. J. Beaty. 1996. Natural cycles of vectorborne pathogens, p. 51–72. In B. J. Beaty and W. C. Marquardt (ed.), The biology of disease vectors. University Press of Colorado, Niwot, Colo.
- Yee, D. A., Dean Bermond, C., Reyes-Torres, L. J., Fijman, N. S., Scavo, N. A., Nelsen, J., & Yee, S. H. (2022). Robust network stability of mosquitoes and human pathogens of medical importance. Parasites & vectors, 15(1), 1-9.
- Zélé, F., Nicot, A., Berthomieu, A., Weill, M., Duron, O., & Rivero, A. (2014). Wolbachia increases susceptibility to Plasmodium infection in a natural system. Proceedings of the Royal society of London B: Biological science, 281(1779), 20132837.
- Zélé, F., Nicot, A., Duron, O., & Rivero, A. (2012). Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system. Journal of evolutionary biology, 25(7), 1243-1252.
1.4. Competencia vectorial: ¿Qué es y como medirla?
2. Bibliografía
Obra publicada con Licencia Creative Commons Reconocimiento No comercial Compartir igual 4.0