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This capsule focuses on how to implement the different unsupervised learning
algorithms introduced in Module 6 (Unsupervised learning: clustering and association
rules) in KNIME. We will create data flows representative of the data science life cycle
to solve clustering problems and create association rules. As in the previous capsule,
data sets already used in Modules 2, 3, and 6 (Bioinformatic analysis of an omics
problem, Data science and machine learning, and Unsupervised learning: clustering and
association rules) will be used as examples here. Specifically, we will analyze the gene
expression data discussed in Module 2 and used as example data in Module 6.

1.1. Clustering

In this section we will create data flows to solve a clustering problem which will
specifically focus on identifying groups in the data without using any a priori information
known about the categories, types, classes, or groups in the data. The flow represented
in figure 1 shows an implementation of the two types of clustering discussed in Module
6: hierarchical and k-means clustering. Hierarchical clustering can be implemented in
two different ways, either by including an external distance model and with its own
node, or by including the distance matrix. Finally, the results are visualized through a
heatmap and different visualization options (continuous or discrete) are shown.
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Figure 1. Data flow with hierarchical clustering and k-means analysis.

First, we read the data (expression matrix) with the “File Reader” node and, as an
example used to facilitate our understanding of the dendrograms, we will select only a
portion of the expression matrix (50 genes and 20 samples) with the “Column Filter” and
“Row Filter” nodes. Once the 50 genes and 20 samples are selected, we demonstrate
several ways to perform hierarchical clustering with KNIME. A distance model can be
created (“Numeric Distances” node) which is used by the “Hierarchical Clustering” node
(“DistMatrix”) together with the data to perform the hierarchical clustering. Figure 2
shows the different configuration options of the “Numeric Distances” node in which
different distances can be used (e.g., Euclidean, Manhattan, or Maximo, etc.) the
variables (samples) to be considered in the clustering, and treatment of missing values.
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Figure 2. Options and parameters of the “Numeric Distances” node.

The “Hierarchical Clustering” node (“DistMatrix”) generates a data model with the
clusters that, together with the “Hierarchical Cluster Assigner” node and the data,
assigns each entry to a cluster number. Finally, we can draw the heatmap with the
“Heatmap” node and interact with it, for example, by visualizing it with continuous
(figure 3) or discrete (figure 4) representation.
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Hierarchical clustering can also be performed without using a distance model by using
the “Hierarchical Clustering” node. This node presents options for the type of distance
to use, number of output clusters, and type of union, as well as the variables to consider
(figure 5).
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Figure 5. The “Hierarchical Clustering” node options and parameters.

We can also visualize and interact with the dendrogram by employing this node. To do
so, right click on the node once it has been executed and select the “View:
Dendrogram”/“distance view” option to show the result (figure 6).
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Figure 6. Visualization of the results as a dendrogram.

Finally, the “k-means clustering” option is also shown in the flow shown in figure 1; the
“k-Means” node allows us to perform such clustering in a very simple way. As shown in
figure 7, it allows us to set the number of clusters to obtain and randomly initiate a
maximum number of iterations, etc.
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Figure 7. The options and parameters for the “k-Means” node.
1.2. Association rules

In this section we will create data flows to solve an association rules problem (figure 8)
using the same data set as used in Module 6 (Capsule 3, Association rules), which
comprises six variables:

MUTATIONSUBTYPES
UV-signature
RNASEQ-CLUSTER_CONSENHIER
MethTypes.201408
MIRCluster
LYMPHOCYTE.SCORE
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Figure 8. Data flow for association rules.

First, we use the “Excel Reader” node to read the data set file containing all the variables
in the set. The “Column Filter” node is used to select 6 of the variables through the
configuration options of this node, as shown in figure 9.
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Figure 9. The “Column Filter” node configuration menu.

These two steps conclude the data preprocessing required to perform the transactions
and calculate the association rules. As explained in Module 6 (Unsupervised learning:
clustering and association rules), the first step in obtaining association rules is identifying
what defines the data items and transactions. To do this we will use the “Column



Combiner” and “Cell Splitter” nodes to join the values of the variables into a single
column and group them into an array. Figure 10 shows the output of the “Cell Splitter”
node, showing the newly created “Transaction” column containing all the values for
each of the variables in an array.
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Figure 10. Output of the “Cell Splitter” node showing the transactions as an array.

These transactions can be used to determine a set of frequent items and to extract
association rules. In the following, we illustrate how to represent these two examples in
KNIME.

1. Determine a set of frequent item set

We can search for frequent items in a list of item sets with the “Item Set Finder” node
which provides different algorithms for this task, including “A priori”, “FP-growth”,
“RElim”, “Sam”, “JIM”, “DICE”, “TANIMOTO”, as shown in figure 11. In addition, we can
also determine the objective (“Frequent”, “Closed”, or “Maximal”) and assign the
Minimum set size and Minimum support levels for the items. In this example, we will
explore the “A priori” algorithm (as detailed in Module 6, Unsupervised learning:
clustering and association rules) which has a support value of 0.015. Figure 12 shows the
item sets obtained when applying the “Item Set Finder” node with these settings, sorted
by the relative percentage of support.
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Figure 11. Options and parameters for the “Item Set Finder” node.
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Figure 22. Item sets obtained using for the “Item Set Finder” node and ordered by their relative percentage of

support.




2. Extract and analyze the association rules

Association rules can be extracted with the “Association Rule Learner” node. Figure 13
shows the different parameters and configuration options available in the “Association
Rule Learner” node, including the minimum number of items, minimum support, and
minimum confidence levels. In this example, we set the minimum number of items to 3,
a support of 0.015, and a confidence level of 80%.
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Figure 33. The “Association Rule Learner” node options and parameters.

Figure 14 shows a scatter plot indicating how the rules generated are distributed
according to two metrics. In this example, the plot illustrates the percentage of
confidence and support, although other metrics such as lift could also be used by
selecting which ones to display in the upper right menu.
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Figure 44. Scatter plot of the rules generated by applying the “Association Rule Learner” node, displayed as a
function of the support and confidence metrics.
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