
Module	7	Big	data

7.4	Classification,	regression,	clustering,	and	association	rules	in	Spark
By	Francisco	Javier	García	Castellano

Associate	Professor	at	the	Department	of	Computer	Science	and	Artificial	Intelligence	(DECSAI),	University	of	Granada.

Reminder:	Introduction	to	this	NoteBook.

In	this	NoteBook,	you	will	be	guided	step-by-step,through	loading	a	dataset	to	the	descriptive	analysis	of	its	contents.

The	Jupyter	NoteBook	(Python)	is	an	approach	that	combines	text	blocks	(like	this	one)	and	code	blocks	or	cells.	The	great	advantage	of	this
system	is	its	interactivity	because	cells	can	be	executed	to	directly	check	the	results	they	contain.	Very	important:	the	order	of	the	instructions
is	fundamental	and	so	each	cell	of	this	NoteBook	must	be	executed	sequentially.	In	any	are	omitted,	the	program	may	throw	an	error	and	so	if
there	is	any	doubt,	you	will	have	to	start	from	the	beginning	again.

First,	it	is	very	important	to	select	"Open	in	draft	mode"	(draft	mode)	at	the	top	left	at	the	beginning.	Otherwise,	for	security	reasons,	it	will	not
be	allowed	to	execute	any	code	blocks.	When	the	first	of	the	blocks	is	executed,	the	following	message	will	appear:	"Warning:	This	NoteBook
was	not	created	by	Google".	Don't	worry,	you	can	trust	the	contents	of	the	NoteBook	and	click	on	"Run	anyway".

Let's	start!

Click	on	the	"play"	button	on	the	left	side	of	each	code	cell.	Remember	that	lines	beginning	with	a	hashtag	(#)	are	comments	and	do	not	affect
the	execution	of	the	script.

You	can	also	click	on	each	cell	and	press	"Ctrl+enter"	(Cmd+enter	on	Mac).

Each	time	you	execute	a	block,	you	will	see	the	output	just	below	it.	The	information	is	usually	always	the	last	statement,	along	with	any	
print() 	commands	present	in	the	code.

INDEX

In	this	NoteBook:

1.	 We	learn	about	the	different	supervised	learning	algorithms	available	in	Apache	Spark,	both	for	classification	and	regression.
2.	 We	will	also	work	with	different	unsupervised	learning	methods	available	in	Spark,	such	as	clustering	and	association	rules.

Contents:

1.	 Introduction.

2.	 Classification	in	Apache	Spark.

3.	 Regression	in	Apache	Spark.

4.	 Clustering	in	Apache	Spark.

5.	 Association	rules	in	Apache	Spark.

1.	INTRODUCTION

We	have	already	seen	the	methodology	used	to	work	with	big	data	using	Apache	Spark.

Now	we	examine	how	the	different	tools	already	seen	in	other	modules	of	this	course	can	be	used,	for	example,	we	will	see	how	to	use
several	regressors	or	several	classifiers	in	Spark.	We	should	point	out	that	the	different	algorithms	we	will	describe	have	been	programmed	to
be	executed	in	a	distributed,	fault-tolerant,	and	scalable	way.	In	other	words,	they	are	designed	to	be	simultaneously	executed	on	many
computers,	and	the	more	computers	in	the	network,	the	better	they	will	run.	In	addition,	there	will	be	no	problem	if	one	or	several	of	the
computers	fail.

In	this	NoteBook	we	will	continue	working	with	Spark	in	Google	Colaboratory,	so	the	preliminary	work	will	be	the	same	as	previously
described,	as	shown	below.

Looking	in	indexes:	https://pypi.org/simple,	https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting	findspark
		Downloading	findspark-2.0.1-py2.py3-none-any.whl	(4.4	kB)
Installing	collected	packages:	findspark
Successfully	installed	findspark-2.0.1
Looking	in	indexes:	https://pypi.org/simple,	https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting	pyspark
		Downloading	pyspark-3.3.1.tar.gz	(281.4	MB)
					━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━	281.4/281.4	MB	4.1	MB/s	eta	0:00:00
		Preparing	metadata	(setup.py)	...	done
Collecting	py4j==0.10.9.5
		Downloading	py4j-0.10.9.5-py2.py3-none-any.whl	(199	kB)
					━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━	199.7/199.7	KB	21.8	MB/s	eta	0:00:00
Building	wheels	for	collected	packages:	pyspark
		Building	wheel	for	pyspark	(setup.py)	...	done
		Created	wheel	for	pyspark:	filename=pyspark-3.3.1-py2.py3-none-any.whl	size=281845512	sha256=4f91129d741fbf2c81
ac9c5e149f3a81b08ebff8b40f9d7556593852f3c3de26
		Stored	in	directory:	/root/.cache/pip/wheels/43/dc/11/ec201cd671da62fa9c5cc77078235e40722170ceba231d7598
Successfully	built	pyspark
Installing	collected	packages:	py4j,	pyspark
Successfully	installed	py4j-0.10.9.5	pyspark-3.3.1

2.	CLASSIFICATION	IN	APACHE	SPARK

As	we	saw	in	the	first	stages	of	this	course,	the	data	is	correctly	labeled	or	classified	in	supervised	learning.	Supervised	learning	algorithms
are	also	called	classifiers	because,	given	a	set	of	input	variables,	they	predict	which	value	of	the	output	variable	they	belong	to.	Therefore,
classifiers	contain	both	the	input	variables	and	the	output	variable.

The	first	thing	we	will	do	is	download	the	data	we	will	work	with	and	then	read	them	into	a	DataFrame.

#First	we	install	Apache	Spark	with	Hadoop.
!wget	-q	http://www-eu.apache.org/dist/spark/spark-3.2.3/spark-3.2.3-bin-hadoop2.7.tgz	
!tar	xf	spark-3.2.3-bin-hadoop2.7.tgz	

#Install	the	Python	packages	to	work	with	Spark.
!pip	install	findspark	#Install	FindSpark.
!pip	install	pyspark			#Install	PySpark.

#Specify	the	location	of	Spark	so	that	PySpark	can	use	it
import	findspark
findspark.init("spark-3.2.3-bin-hadoop2.7")#SPARK_HOME

#Set	the	environment	variables.
import	os
os.environ["JAVA_HOME"]	=	"/usr/lib/jvm/default-java"	
os.environ["SPARK_HOME"]	=	"/content/spark-3.2.3-bin-hadoop2.7"

#Create	a	Spark	session	to	start	working.
from	pyspark.sql	import	SparkSession
spark	=	SparkSession.builder	\
				.master("local[*]")	\
				.appName("PySpark	examples	of	supervised	and	unsupervised	learning")	\
				.config("spark.sql.execution.arrow.enabled",	"true")	\
				.getOrCreate()

#Download	the	data	sets	into	Google	Colaboratory.	
!wget	-nv		--no-check-certificate	'https://docs.google.com/uc?export=download&id=1PYzEIdmnfjOnBpPDIFBE9hL1Lkj_OBCk'
!wget	-nv		--no-check-certificate	'https://docs.google.com/uc?export=download&id=1hHQfcvrFa5Jds-9tW_X4sHjKpYKdii9s'

#Read	the	file	with	the	input	variables.
dfX	=	spark.read.csv('inmune_X.csv',inferSchema=True,	header=True)
#Read	the	file	with	the	output	variables.
dfY	=	spark.read.csv('inmune_Y.csv',inferSchema=True,	header=True)

2023-01-25	11:28:48	URL:https://doc-14-90-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mb
p1/h1b5tqdgju2v8ov79diajrj99rjb8fj7/1674646125000/05131985187150583765/*/1PYzEIdmnfjOnBpPDIFBE9hL1Lkj_OBCk?e=down
load&uuid=42609ef4-0eab-42f4-9ad6-e8065db42314	[314913/314913]	->	"inmune_X.csv"	[1]
2023-01-25	11:28:48	URL:https://doc-0c-90-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mb
p1/56q4jjffgbrb7obusbr808hsopi8qses/1674646125000/05131985187150583765/*/1hHQfcvrFa5Jds-9tW_X4sHjKpYKdii9s?e=down
load&uuid=cc305f02-a9e2-419d-b137-a33d0e725733	[3949/3949]	->	"inmune_Y.csv"	[1]

Now	we	prepare	the	different	stages	involved	in	the	data	preprocessing.	In	other	words,	we	prepare	them	to	learn	models	from	these	data.	In
addition,	we	will	split	them	into	two	sets	for	use	as	a	training	set	and	a	test	set.

Different	classifiers	have	already	been	implemented	in	Apache	Spark.	We	will	distinguish	those	used	for	binary	classification	(i.e.,	the	output
variable	has	only	two	states)	from	those	used	for	multi-class	classification	(i.e.,	those	in	which	the	output	variable	has	more	than	two	states).

Problem	Type Implemented	algortihms	in	Spark

Binary	classsification

Binomial	Logistic	Regression
Linear	Support	Vector	Machines
Decision	Tree
Random	Forest
Gradient-boosted	Tree
Multilayer	Perceptron
Naïve	Bayes

Multiclass	clasification

Multinomial	Logistic	Regression	
Decision	Tree
Random	Forest
Gradient-boosted	tree
Multilayer	Perceptron
Naïve	Bayes
One-vs-Rest	(One-vs-all)

As	shown	in	the	table,	all	the	classifiers	that	allow	us	to	work	with	multiclass	problems,	also	allow	us	to	work	with	binary	problems.	This
makes	sense,	given	that	if	an	algorithm	can	discriminate	between	4	or	10	output	variable	values,	it	should	also	be	able	to	distinguish	between
2.

There	is	a	binary	and	a	multiclass	version	for	logistic	regression	while	support	vector	machines	only	allow	binary	classification.

The	one-vs-all	meta-classifier	appears	in	the	multiple	classification	section	but	not	in	the	binary	classification	section.	This	is	not	a	classifier	in
itself	because	it	requires	a	base	classifier.	However,	this	scheme	allows	us	to	use	binary	classifiers	in	multiclass	problems	by	building	a	base
classifier	for	each	value	of	the	output	variable.	This	distinguishes	the	i-th	value	of	the	output	variable	from	the	remaining	variables.

Let’s	now	look	at	an	example	of	a	classifier:

#Join	the	two	DataFrames.
df=dfX.join(dfY,	dfX._c0	==	dfY._c0).drop('_c0')

#Drop	the	column	that	indicates	the	instance	number.
dfX=dfX.drop('_c0')
dfY=dfY.drop('_c0')

#Preprocess	the	data	for	use	in	a	supervised	learning	algorithm.
from	pyspark.ml	import	Pipeline
from	pyspark.ml.feature	import	StringIndexer
from	pyspark.ml.feature	import	VectorAssembler

#Index	the	output	variable.
indexer	=	StringIndexer(inputCol="RNASEQ-CLUSTER_CONSENHIER",	outputCol="class")

#Join	the	input	variables	with	VectorAssembler.
assembler	=	VectorAssembler(inputCols=dfX.columns,outputCol="features")

#Store	the	stages	to	be	used	in	a	pipeline.
stages=[indexer,	assembler]

#Split	the	data	(without	preprocessing).
train,	test	=	df.randomSplit([0.7,	0.3],	seed	=	2020)

from	pyspark.ml.classification	import	LinearSVC

#Define	the	model:	SVM.
svm	=	LinearSVC(featuresCol	=	'features',	labelCol	=	'class',maxIter=10)

#Build	a	pipeline	with	the	preprocesing	and	the	SVM.
pipeline=Pipeline().setStages(stages+[svm])	

#Fit	the	model	to	the	training	dataset.	
modelSVM	=	pipeline.fit(train)

https://spark.apache.org/docs/latest/ml-classification-regression.html#binomial-logistic-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#linear-support-vector-machine
https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-tree-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/latest/ml-classification-regression.html#multinomial-logistic-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-tree-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/latest/ml-classification-regression.html#one-vs-rest-classifier-aka-one-vs-all

Accuracy:	0.7764705882352941

In	the	previous	example	we	used	the	Linear	Support	Vector	Machine	(or	SVM)	and	learnt	a	binary	classifier	from	the	previously	generated
data.

Three	parameters	appeared	in	the	logistic	regression	and	they	also	appear	in	this	example,	as	described	below:

featuresCol :	This	indicates	which	variable	of	the	DataFrame	contains	all	the	input	variables	joined	with	 VectorAssembler .	In	our
examples,	we	used	the	default	value	called	 features .
labelCol :	Indicates	which	variable	of	the	DataFrame	is	the	output	variable.	In	our	examples,	it	is	usually	called	 class ,	but	if	no

value	is	given	its	deafult	is	 label .
maxIter :	This	indicates	the	maximum	number	of	iterations	performed	by	the	algorithm.	Many	machine	learning	algorithms	are

optimized	by	iterative	processes.	Therefore,	it	is	the	maximum	number	of	iterations	required	to	run	the	optimization	algorithm;	too	small	a
value	may	worsen	the	results	and	too	large	a	value	may	take	too	long	or	overfit	the	data.

More	information	on	the	parameters	used	can	be	found	in	logistic	regression,	or	in	support	vector	machines	in	the	application	programming
interface	(API).

We	will	now	use	a	decision	tree.

Accuracy:	0.7058823529411765

Decision	tree	is	an	interpretable	model	which	we	can	imagine	as	a	compacted	set	of	"IF	THEN	..."	type	rules.

Among	the	decision	tree	parameters,	it	is	especially	worth	highlighting:

maxDepth :	The	maximum	depth	of	the	tree	for	the	number	of	nodes,	which	by	default,	is	5.
minInstancesPerNode :	The	minimum	number	of	instances	required	to	keep	branching	the	tree,	which	by	default,	is	1.
minInfoGain :	The	minimum	threshold	of	the	splitting	criterion	required	for	further	branching,	which	by	default,	is	0.
maxBins :	The	number	of	intervals	used	to	discretize	continuous	variables,	which	by	default,	is	32.
impurity :	Criterion	used	to	split	the	tree,	which	can	take	one	of	two	values:	 entropy 	or	 gini ,	the	latter	being	the	default	value.

The	parameters	 maxDepth ,	 minInstancesPerNode ,	and	 minInfoGain 	are	used	to	limit	the	tree	growth,	a	practice	referred	to	as
pre-pruning.

Accuracy:	0.8235294117647058

#Make	predictions	with	the	learned	model	(preprocessing	+	SVM).
predictions	=	modelSVM.transform(test)

#Next,	display	the	goodness	of	the	model.
from	pyspark.ml.evaluation	import	MulticlassClassificationEvaluator
evaluator	=	MulticlassClassificationEvaluator(labelCol="class",	metricName="accuracy")
print('Accuracy:',	evaluator.evaluate(predictions))

from	pyspark.ml.classification	import	DecisionTreeClassifier

#Define	the	decision	tree	and	its	parameters.
dt	=	DecisionTreeClassifier(featuresCol	=	'features',	labelCol	=	'class')

#Build	a	pipeline	with	the	preprocesing	and	the	tree.
pipeline=Pipeline().setStages(stages+[dt])	

#Fit	the	model	to	the	training	dataset.	
modelDT	=	pipeline.fit(train)

#Make	predictions	with	the	learned	model	(preprocessing	+	tree).
predictions	=	modelDT.transform(test)

#Display	the	accuracy	of	the	model
print('Accuracy:',	evaluator.evaluate(predictions))

from	pyspark.ml.classification	import	RandomForestClassifier

#Define	a	random	forest	(RF).
rf	=	RandomForestClassifier(featuresCol	=	'features',	labelCol	=	'class',	numTrees=10)

#Build	a	pipeline	with	the	preprocessing	and	the	random	forest.
pipeline=Pipeline().setStages(stages+[rf])	

#Fit	the	model	to	the	train	dataset	and	test	it.
predictions	=	pipeline.fit(train).transform(test)

#Display	the	accuracy	of	the	model.
print('Accuracy:',	evaluator.evaluate(predictions))

https://spark.apache.org/docs/latest/ml-classification-regression.html#linear-support-vector-machine
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.classification.LogisticRegression.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.classification.LinearSVC.html
https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.classification.DecisionTreeClassifier.html

Accuracy:	0.8235294117647058

The	next	classifier	we	will	see	is	Multilayer	Perceptron	,	which	is	quite	a	popular	type	of	artificial	neural	network	(ANN).	To	use	it,	we	must
specify	the	architecture	of	the	neural	network,	that	is,	the	number	of	layers	and	the	number	of	artificial	neurons	per	layer.

The	input	layer	has	as	many	neurons	as	input	variables	and	the	output	layer	must	have	as	many	neurons	as	the	number	of	values	of	the
output	variable.	In	addition,	we	can	indicate	as	many	hidden	layers	as	we	want.

To	specify	the	architecture	of	the	neural	network	we	will	use	a	list,	where	each	element	represents	a	layer	and	a	number	indicates	how	many
neurons	are	used	in	each	layer.	The	 layers 	argument	is	used	to	specify	the	architecture	of	the	multilayer	perceptron.

Accuracy:	0.788235294117647

In	Capsule	3	of	Module	5	(Advanced	methods	in	classification)	when	we	looked	at	Ensemble	models,	that	is,	sets	of	classifiers	that	function
as	one,	we	distinguished	two	approaches:	Bagging	and	Boosting.	In	that	Module,	the	random	forest	classifier	was	presented	as	an	example
of	Bagging.	However,	we	did	not	examine	any	examples	of	Boosting.	In	the	following	example,	we	will	see	a	Boosting	ensemble,	namely	the
Gradient	Boosted	Tree	(GBT).	Instead	of	learning	many	decision	trees	at	once	like	random	forest,	it	builds	decision	trees	stepwise,	seeking
to	improve	the	results	of	the	immediately	preceding	tree.	In	Apache	Spark,	GBT	is	implemented	in	the	 GBTClassifier 	class,	while	the
number	of	iterations	also	indicates	the	number	of	decision	trees	generated.

Accuracy:	0.788235294117647

3.	REGRESSION	IN	APACHE	SPARK

So	far,	we	have	worked	with	classification	problems	(i.e.	supervised	learning	problems	where	the	output	variable	is	discrete)	but	now	we	will
see	how	to	work	with	Regression	where	the	output	variable	is	continuous.	Learning	regressors	or	classifiers	is	conceptually	the	same,
although	the	models	and	how	the	results	are	evaluated	will	be	different.

To	begin	with,	we	will	download	the	HOMA	dataset	and	save	it	in	a	DataFrame	to	start	working	with	it.

from	pyspark.ml.classification	import	MultilayerPerceptronClassifier

#Specify	the	architecture	of	the	artificial	neural	network	(ANN).
layers	=	[len(dfX.columns)	,	int(len(dfX.columns)/2),	int(len(dfX.columns)/4),	2]

#Define	the	neural	network.
ann	=	MultilayerPerceptronClassifier(featuresCol	=	'features',	labelCol	=	'class',
																																					maxIter=100,	layers=layers)

#Build	a	pipeline	with	the	preprocessing	and	the	ANN.
pipeline=Pipeline().setStages(stages+[ann])	

#Fit	the	model	to	the	training	dataset.	
modelANN	=	pipeline.fit(train)

#Make	predictions	with	the	learned	model	(preprocessing	+	ANN).
predictions	=	modelANN.transform(test)

#Display	the	goodness	of	the	model.
print('Accuracy:',	evaluator.evaluate(predictions))

from	pyspark.ml.classification	import	GBTClassifier

#	Train	a	Gradient	Boosted	Tree	(GBT)	model.
gbt	=	GBTClassifier(featuresCol	=	'features',	labelCol	=	'class',	maxIter=100)

#Build	a	pipeline	with	the	preprocessing	and	the	GBT.
pipeline=Pipeline().setStages(stages+[gbt])	

#Fit	the	model	to	the	training	dataset.	
modelGBT	=	pipeline.fit(train)

#Make	predictions	with	the	learned	model	(preprocessing	+	GBT).
predicctions	=	modelGBT.transform(test)

#Display	the	accuracy	of	the	model.
print('Accuracy:',	evaluator.evaluate(predictions))

#Download	the	data	set	into	Google	Colaboratory.	
!wget	-nv	--no-check-certificate	'https://docs.google.com/uc?export=download&id=1GO2NBxYw54K6HkN-YgXbNadrLo5O6-0u'

https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-tree-classifier

2023-01-25	11:30:51	URL:https://doc-00-24-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mb
p1/iojm2dv3htal27r1m964ijb91ugpu7n9/1674646200000/17606232221483619752/*/1GO2NBxYw54K6HkN-YgXbNadrLo5O6-0u?e=down
load&uuid=53e93594-e196-4282-8054-f64a5125fceb	[29228/29228]	->	"HOMA.csv"	[1]
+---+----+-------+-------+-----+----+--------+---------+---------+-----+----+----------+----------+---------+----
-----+-----+
|Sex|	Age|	Tanner|	Height|		BMI|		WC|	TAGmgDL|	HDLCmgDL|	LDLCmgDL|		SBP|	DBP|	Sedentary|					Light|	Moderate|	Vig
orous|	HOMA|
+---+----+-------+-------+-----+----+--------+---------+---------+-----+----+----------+----------+---------+----
-----+-----+
|		1|	9.5|				0.0|			1.55|11.34|60.0|				55.0|					51.0|					93.0|	97.0|60.0|411.089286|321.580357|22.133929|	3.9
82143|	1.98|
|		1|	8.0|				0.0|			1.15|	12.4|46.3|				51.0|					70.0|					59.0|	90.0|55.0|435.607143|	316.97619|48.059524|	14.
27381|	0.87|
|		0|10.5|				0.0|			1.42|12.99|67.5|				65.0|					60.0|					96.0|	96.0|54.0|483.904762|337.785714|33.309524|	7.9
88095|	1.46|
|		0|	8.1|				0.0|			1.27|13.43|53.1|				41.0|					78.0|				100.0|108.0|46.0|429.297619|	241.97619|39.678571|11.8
21429|	1.07|
|		1|10.4|				0.0|			1.32|13.72|51.9|				39.0|				100.0|				120.0|107.0|69.0|512.071429|216.035714|					9.75|	2.4
10714|		0.8|
+---+----+-------+-------+-----+----+--------+---------+---------+-----+----+----------+----------+---------+----
-----+-----+
only	showing	top	5	rows

Now	let's	prepare	the	dataset	to	work	with	it	in	Apache	Spark.	The	first	thing	we	will	do	is	change	the	name	of	the	output	variable	to	 label ,
the	default	value	used	by	Spark.

Next,	we	will	index	the	discrete	variable	 Sex .	After	that,	we	must	join	the	input	variables	with	 VectorAssembler .

Thus,	we	will	leave	the	preprocessing	steps	ready	to	add	to	the	pipeline	along	with	the	regressor.	Finally,	we	will	split	the	input	data	into
training	and	test	sets.

Train		216		instances.
Test			76		instances.

In	the	following	example	we	will	use	linear	regression,	which	we	already	looked	at	in	detail	in	Module	4(Supervised	learning:	regression
techniques),	to	make	our	predictions	about	the	data	set.

#Read	the	dataset	with	all	the	variables.
dfR	=	spark.read.csv('HOMA.csv',inferSchema=True,	header=True)
dfR.show(5)

#Change	the	name	of	the	output	variable.
dfR=dfR.withColumnRenamed("	HOMA","label")	

#Index	the	categorial	variables.
indexer	=	StringIndexer(inputCol="Sex",	outputCol="SexI")

#Join	the	input	variables	with	VectorAssembler.
inputVars=dfR.columns
inputVars.append('SexI')
inputVars.remove('Sex')
inputVars.remove('label')
assembler	=	VectorAssembler(inputCols=inputVars,	outputCol="features")

#store	the	preprocessing	stages	to	be	used	in	a	pipeline.
stagesR=[indexer,	assembler]

#Split	the	data	(without	preprocessing).
trainR,	testR	=	dfR.randomSplit([0.7,	0.3],	seed	=	2020)
print	("Train	",	trainR.count(),'	instances.')
print	("Test		",	testR.count(),'	instances.')

from	pyspark.ml.regression	import	LinearRegression
from	pyspark.ml.evaluation	import	RegressionEvaluator

#Define	the	linear	regressor.
lr	=	LinearRegression()

#Build	a	pipeline	with	the	preprocessing	and	the	regressor.
pipeline=Pipeline().setStages(stagesR+[lr])	

#Fit	the	model	to	the	training	dataset.
regressor	=	pipeline.fit(trainR)

#Make	predictions	with	the	learned	model	(preprocessing	+	linear	regressor).

https://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression

rmse:	0.7907446870395332
r2:	0.4543573119593476

We	can	also	use	decision	trees	in	regression	problems,	using	the	same	parameters	same	as	in	classification	problems.

rmse:	0.9945250479132998
r2:	0.136887858629134

As	we	have	already	seen,	we	can	use	decision	trees	as	regressors;	as	in	supervised	learning,	we	can	use	a	set	of	decision	trees	in	an
ensemble.	To	do	this	we	can	follow	a	bagging	strategy	to	generate	different	trees	using	different	training	subsets.	This	allows	us	to	use	sets
of	regressors	in	a	random	forest	by	using	the	 RandomForestRegressor 	class	in	Apache	Spark.

In	the	following	example,	we	will	see	a	random	forest	regressor,	whose	most	interesting	parameter	is	 numTrees 	which	indicates	the
number	of	trees	to	use:

rmse:	0.7365604574436793
r2:	0.5265734886452607

The	examples	we	have	looked	at	here	are	only	a	subset	of	the	regressors	implemented	in	Apache	Spark	(shown	in	the	following	table).

Regression	methods	implemented	in	Apache	Spark

Linear	Regression

Generalized	Linear	Regression

Decision	Tree

Random	Forest

Gradient	Boosted	Trees

Survival	Regression

Isotonic	Regression

predictions	=	regressor.transform(testR)

#Display	the	goodness	of	the	model.
evaluatorR	=	RegressionEvaluator()
print('rmse:',	evaluatorR.evaluate(predictions))
print('r2:',	evaluatorR.evaluate(predictions,	{evaluatorR.metricName:	"r2"}))

from	pyspark.ml.regression	import	DecisionTreeRegressor

#Define	a	decision	tree	regressor.
dtR	=	DecisionTreeRegressor()

#Build	a	pipeline	with	the	preprocessing	and	the	regressor.
pipeline=Pipeline().setStages(stagesR+[dtR])	

#Fit	the	model	to	the	train	dataset	and	test	it.
predictions	=	pipeline.fit(trainR).transform(testR)
print('rmse:',	evaluatorR.evaluate(predictions))
print('r2:',	evaluatorR.evaluate(predictions,	{evaluatorR.metricName:	"r2"}))

from	pyspark.ml.regression	import	RandomForestRegressor

#Define	a	random	forest	for	regression.
rfR	=	RandomForestRegressor(numTrees=10)

#Build	a	pipeline	with	the	preprocessing	and	the	regressor.
pipeline=Pipeline().setStages(stagesR+[rfR])	

#Fit	the	model	to	the	training	dataset	and	test	it.
predictions	=	pipeline.fit(trainR).transform(testR)
print('rmse:',	evaluatorR.evaluate(predictions))
print('r2:',	evaluatorR.evaluate(predictions,	{evaluatorR.metricName:	"r2"}))

https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-regression
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.regression.RandomForestRegressor.html#pyspark.ml.regression.RandomForestRegressor
https://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#generalized-linear-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-tree-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#isotonic-regression

Factorization	Machines

4.	CLUSTERING	IN	APACHE	SPARK

So	far,	we	have	worked	in	Spark	with	supervised	learning	algorithms;	in	other	words,	we	have	input	variables	and	an	output	variable	that	we
wanted	to	predict.

In	this	section	we	will	work	with	unsupervised	learning.	As	we	previously	saw,	clustering	allows	us	to	discover	groups	of	variables	in	the	data;
these	groups	(or	clusters)	are	a	set	of	instances	that	are	similar	to	each	other.

To	work	with	the	different	clustering	algorithms	in	Spark,	we	will	first	load	the	1,500	gene	expression	matrix	that	we	obtained	in	Module	2
(Bioinformatic	analysis	of	an	omics	problem).

2023-01-25	11:31:03	URL:https://doc-08-bc-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mb
p1/v3bsdlbj8elpicj25fcsf6fk3pdblaht/1674646200000/11180625338828972622/*/1rQd3EHPQvDSVsjwMZG3oM7khRCR_EPwi?e=down
load&uuid=08307959-fa31-4dc1-b48f-97eaaa2683a2	[12254970/12254970]	->	"clustering.csv"	[1]
+------+-----------------+-----------------+------------------+-------...
|			_c0|		TCGA_D9_A4Z6_06|		TCGA_EE_A2MQ_06|			TCGA_EE_A3AF_06|		TCGA_...
+------+-----------------+-----------------+------------------+-------...
|	TYRP1|		7.9415452107038|	2.75046277351166|		-5.5660300159965|-4.9072...
|RPS4Y1|	3.47587808323183|-9.25208847558951|	-8.78199418294173|-1.8665...
|	KRT6A|	-2.7347854782524|0.420073126934247|0.0260954433791682|0.85041...
|		XIST|-2.90305627754544|	8.32028934247253|		6.92852531788606|-3.0423...
|	KRT14|-3.65367916508873|-2.89879166292526|-0.531967458719549|0.37526...
+------+-----------------+-----------------+------------------+-------...
only	showing	top	5	rows

Now	we	will	apply	the	K-means	algorithm	to	the	data.	This	is	one	of	the	simplest	and	most	popular	clustering	algorithms	used	in	unsupervised
learning.	Let's	first	look	at	some	of	its	most	relevant	parameters:

k :	Indicates	the	number	of	centroids	to	use,	in	other	words,	the	number	of	clusters	to	be	detected.
maxIter :	Indicates	the	maximum	number	of	iterations	that	will	be	performed	by	the	algorithm.
distanceMeasure :	Specifies	the	distance	algorithm	to	use,	which	can	either	have	a	 cosine 	or	 euclidean 	(default)	value.

The	evaluation	of	unsupervised	learning	models	is	difficult	because	of	the	nature	of	the	clustering	problem:	the	clusters	are	not	known	in
advance	and	it	is	not	easy	to	separate	the	good	clusters	from	the	bad	ones.	To	hellp	us	with	this	problem	we	can	calculate	the	Silhouette
index	which,	as	we	saw	in	Capsule	2	of	Module	6	(Clustering),	is	an	estimate	of	the	cohesion	of	an	instance	with	its	cluster	and	of	separation
from	the	other	clusters.	It	always	falls	between	[-1,	1],	and	the	higher	the	number,	the	better.	To	calculate	this	index	in	Spark,	we	must	use	the
ClusteringEvaluator 	class,	which	reminds	us	of	the	evaluators	used	in	regression	and	classification.

#Download	the	data	set	into	Google	Colaboratory.	
!wget	-nv	--no-check-certificate	'https://docs.google.com/uc?export=download&id=1rQd3EHPQvDSVsjwMZG3oM7khRCR_EPwi'

#Read	the	dataset	with	all	the	variables.
dfC	=	spark.read.csv('clustering.csv',	inferSchema=True,	header=True)
dfC.show(5)

from	pyspark.ml.clustering	import	KMeans

#Join	the	input	variables	with	VectorAssembler.
inputVars=dfC.columns
inputVars.remove('_c0')
assembler	=	VectorAssembler(inputCols=inputVars,	outputCol="features")

#	Define	a	K-means	model	for	clustering,	using	2	clusters.
kmeans	=	KMeans(k=2)

#Build	a	pipeline	with	the	preprocessing	and	K-means.
pipeline=Pipeline().setStages([assembler,kmeans])	

#Fit	the	model	to	the	data.
modelKMeans	=	pipeline.fit(dfC)

from	pyspark.ml.evaluation	import	ClusteringEvaluator

#Make	predictions	with	the	learned	model	(preprocessing	+	K-means).
predictions	=	modelKMeans.transform(dfC)

https://spark.apache.org/docs/latest/ml-classification-regression.html#factorization-machines-regressor
https://spark.apache.org/docs/latest/ml-clustering.html#k-means
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.clustering.KMeans

The	silhouette	index	is	=	0.17626084345403925	(using	k=2)

Another	model	is	bisecting-K-means	(a	hierarchical	variant	of	K-means);	at	each	step,	this	algorithm	splits	each	cluster	in	two	using	K-means.

The	silhouette	index	is	=	0.17492723894069465	(using	k=2)

However,	you	should	be	aware	that	Spark	contains	other	clustering	methods,	as	shown	in	the	following	table.

Clustering	methods	implemented	in	Spark

K-Means

Latent	Dirichlet	Allocation

Bisecting	K-Means

Gaussian	Mixture	Model

Power	Iteration	Clustering

5.	ASSOCIATION	RULES	IN	APACHE	SPARK

Association	rules	are	another	unsupervised	learning	tool	that	will	allow	us	to	discover	relationships	between	variables	in	large	datasets.
Apache	Spark	contains	the	FP-growth	algorithm	that	we	have	already	seen.

The	problem	here	is	in	the	data	preprocessing	because	the	transactional	data	format	accepted	by	Spark's	FP-Growth	algorithm	must	be
numeric	and	unique	(i.e.	it	does	not	allow	repeated	items),	and	all	the	itemsets	must	be	in	an	 array .	In	addition,	the	 get_dummies()
method	of	 pandas 	is	not	available	in	Spark,	so	we	will	have	to	create	a	column	for	each	state	of	each	variable.

#Evaluate	the	clustering	algorithm	using	the	Silhouette	index.	
evaluator	=	ClusteringEvaluator()
silhouette	=	evaluator.evaluate(predictions)
print("The	silhouette	index	is	=	"	+	str(silhouette)+"	(using	k=2)")

from	pyspark.ml.clustering	import	BisectingKMeans

#	Define	a	bisecting	K-means	model	for	clustering,	using	2	clusters.
bkmeans	=	BisectingKMeans().setK(2)

#Build	a	pipeline	with	the	preprocessing	and	bisecting-K-means.
pipeline=Pipeline().setStages([assembler,bkmeans])	

#Fit	the	model	to	the	data.
modelBKMeans	=	pipeline.fit(dfC)

#Make	predictions	with	the	learned	model	(preprocessing	+	bisecting-K-means).
predictionsB	=	modelBKMeans.transform(dfC)

#Evaluate	the	clustering	algorithm	using	the	Silhouette	index.
silhouette	=	evaluator.evaluate(predictionsB)
print("The	silhouette	index	is	=	"	+	str(silhouette)+"	(using	k=2)")

from	pyspark.sql	import	functions	as	F

#Download	the	data	set	into	Google	Colaboratory.	
!wget		-nv	--no-check-certificate	'https://docs.google.com/uc?export=download&id=1j7bPKMcMo1jHU-zERXo1lmUtbKw7AHlI'
#Read	the	dataset	with	all	the	variables.
dfAR	=	spark.read.csv('datos_entrada_reglas.csv',	inferSchema=True,	header=True)
dfAR.show(5)

#Add	a	new	column	for	each	possible	state	of	each	variable.
newVars=[]
counter=1
vars=dfAR.columns
#Iterate	through	the	variables.
for	var	in	vars:
		#Iterate	through	each	state	of	each	variable.
		for	state	in	dfAR.select(var).distinct().collect():
				if	state[var]	!=	'_':	#Ignore	null	values.

https://spark.apache.org/docs/latest/ml-clustering.html#bisecting-k-means
https://spark.apache.org/docs/latest/ml-clustering.html#k-means
https://spark.apache.org/docs/latest/ml-clustering.html#latent-dirichlet-allocation-lda
https://spark.apache.org/docs/latest/ml-clustering.html#bisecting-k-means
https://spark.apache.org/docs/latest/ml-clustering.html#gaussian-mixture-model-gmm
https://spark.apache.org/docs/latest/ml-clustering.html#power-iteration-clustering-pic
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#fp-growth

2023-01-25	11:31:28	URL:https://doc-0g-bc-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mb
p1/jec1avq9ggnbd86g15i28us1jp48i6hg/1674646275000/11180625338828972622/*/1j7bPKMcMo1jHU-zERXo1lmUtbKw7AHlI?e=down
load&uuid=af6c9bbc-fca2-45a7-a959-471b05e2d73f	[22613/22613]	->	"datos_entrada_reglas.csv"	[1]
+--------------------+------------+-------------------------+--------------------+----------+----------------+
|				MUTATIONSUBTYPES|UV_signature|RNASEQ_CLUSTER_CONSENHIER|				MethTypes_201408|MIRCluster|LYMPHOCYTE_SCORE|
+--------------------+------------+-------------------------+--------------------+----------+----------------+
BRAF_Hotspot_Mutants	UV_signature	keratin	normal_like	MIR_type_3	2
RAS_Hotspot_Mutants	UV_signature	keratin	CpG_island_methyl...	MIR_type_2	4
BRAF_Hotspot_Mutants	UV_signature	keratin	normal_like	MIR_type_1	5
RAS_Hotspot_Mutants	UV_signature	keratin	hypo_methylated	MIR_type_2	2
Triple_WT	not_UV	immune	CpG_island_methyl...	MIR_type_2	6
+--------------------+------------+-------------------------+--------------------+----------+----------------+
only	showing	top	5	rows

Data	with	columns	for	each	state	of	each	variable:
+------------------------------------+--------------------------------...
|MUTATIONSUBTYPES=RAS_Hotspot_Mutants|MUTATIONSUBTYPES=NF1_Any_Mutants...
+------------------------------------+--------------------------------...
|																																			0|																															0...
|																																			1|																															0...
|																																			0|																															0...
|																																			1|																															0...
|																																			0|																															0...
+------------------------------------+--------------------------------...
only	showing	top	5	rows

Identifiers	used	for	each	state	of	each	variable:
1	=	MUTATIONSUBTYPES=RAS_Hotspot_Mutants
2	=	MUTATIONSUBTYPES=NF1_Any_Mutants
3	=	MUTATIONSUBTYPES=Triple_WT
4	=	MUTATIONSUBTYPES=BRAF_Hotspot_Mutants
5	=	UV_signature=UV_signature
6	=	UV_signature=not_UV
7	=	RNASEQ_CLUSTER_CONSENHIER=keratin
8	=	RNASEQ_CLUSTER_CONSENHIER=immune
9	=	RNASEQ_CLUSTER_CONSENHIER=MITF_low
10	=	MethTypes_201408=hypo_methylated
11	=	MethTypes_201408=hyper_methylated
12	=	MethTypes_201408=normal_like
13	=	MethTypes_201408=CpG_island_methylated
14	=	MIRCluster=MIR_type_2
15	=	MIRCluster=MIR_type_1
16	=	MIRCluster=MIR_type_3
17	=	MIRCluster=MIR_type_4
18	=	LYMPHOCYTE_SCORE=3
19	=	LYMPHOCYTE_SCORE=0
20	=	LYMPHOCYTE_SCORE=5
21	=	LYMPHOCYTE_SCORE=6
22	=	LYMPHOCYTE_SCORE=4
23	=	LYMPHOCYTE_SCORE=2

Data	processed	for	FPGrowth:
+---+---------------------+
|id	|items																|
+---+---------------------+
0	[4, 5, 7, 12, 16, 23]
1	[1, 5, 7, 13, 14, 22]
2	[4, 5, 7, 12, 15, 20]
3	[1, 5, 7, 10, 14, 23]

						#If	this	status	is	present,	we	will	add	a	unique	identifier,	if	it	is	not	then	0.
						dfAR	=	dfAR.withColumn(var+"="+state[var],	
								F.when(dfAR[var]	==	state[var],	counter).otherwise(0))
						#Increase	the	identifying	number	of	each	state.
						counter=counter+1
						#Save	the	generated	columns	in	a	list.
						newVars.append(var+"="+state[var])
print("\nData	with	columns	for	each	state	of	each	variable:")
dfAR.select(newVars).show(5)

#Let's	show	what	each	numerical	identifier	means.
print("\nIdentifiers	used	for	each	state	of	each	variable:")
for	i	in	range(len(newVars)):
		print(i+1,"=",newVars[i])

#Join	the	variables	with	the	array	function,	because	VectorAssembler	returns	a	
#Vector	and	FPGrowth	requires	the	itemsets	to	be	in	an	array.
dataAR	=	dfAR.withColumn('itemsWithZeros',	F.array(newVars))
dataAR=dataAR.withColumn("items",	F.array_remove("itemsWithZeros",	0))

print("\nData	processed	for	FPGrowth:")
dataAR	=	dataAR.withColumn("id",	F.monotonically_increasing_id())
dataAR.select("id","items").show(5,False)

|4		|[3,	6,	8,	13,	14,	21]|
+---+---------------------+
only	showing	top	5	rows

Implementation	of	FP-growth	in	Spark	requires	the	following	parameters:

minSupport :	The	minimum	support	required	for	an	itemset	to	be	identified	as	frequent.
minConfidence :	The	minimum	confidence	required	to	generate	an	association	rule.	The	parameter	will	not	affect	the	extraction	of

frequent	itemsets,	but	will	determine	the	minimum	confidence	to	generate	association	rules	from	frequent	itemsets.

Once	we	have	learned	the	model,	we	can	use	the	 freqItemsets 	method	to	obtain	the	frequent	itemsets,	or	we	can	use	the	
associationRules 	method	to	obtain	the	association	rules.

+------+----+
|	items|freq|
+------+----+
[14]	85
[4]	150
[4, 5]	136
[1]	92
[1, 5]	86
[11]	93
[13]	85
[8]	168
[8, 5]	142
[10]	84
[7]	102
[19]	91
[5]	265
+------+----+

+----------+----------+-------------------+------------------+-------------------+
|antecedent|consequent|									confidence|														lift|												support|
+----------+----------+-------------------+------------------+-------------------+
[8]	[5]	0.8452380952380952	1.0621293800539082	0.4264264264264264
[4]	[5]	0.9066666666666666	1.139320754716981	0.4084084084084084
[5]	[4]	0.5132075471698113	1.139320754716981	0.4084084084084084
[5]	[1]	0.32452830188679244	1.1746513535684988	0.25825825825825827
[5]	[8]	0.5358490566037736	1.0621293800539084	0.4264264264264264
[1]	[5]	0.9347826086956522	1.1746513535684988	0.25825825825825827
+----------+----------+-------------------+------------------+-------------------+

The	a	priori	algorithm	is	not	implemented	in	Apache	Spark.	However,	as	we	have	seen,	the	FP-Growth	algorithm	is	implemented.

Association	Rules	Algorithms	in	Apache	Spark

FP-Growth

PrefixSpan

BIBLIOGRAPHICAL	REFERENCES

The	Apache	Software	Foundation."Classification	and	regression".	(2020).	[Accessed	23	June	2020].	Available	from:
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification-and-regression

from	pyspark.ml.fpm	import	FPGrowth

#Use	FP-growth	algorithm.
fpGrowth	=	FPGrowth(itemsCol="items",	minSupport=0.25,	minConfidence=0.2)

#Fit	the	model	to	the	data.
modeloFPgrowth	=	fpGrowth.fit(dataAR)

#Display	the	frequent	itemsets.
modeloFPgrowth.freqItemsets.show()

#Show	the	association	rules	obtained.
modeloFPgrowth.associationRules.show()

https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#fp-growth
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#prefixspan
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification-and-regression

The	Apache	Software	Foundation."Clustering".	(2020).	[Accessed	23	June	2020].	Available	from:	https://spark.apache.org/docs/latest/ml-
clustering.html#clustering

The	Apache	Software	Foundation."Frequent	Pattern	Mining".	(2020).	[Accessed	23	June	2020].	Available	from:
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#frequent-pattern-mining

MOOC	Machine	Learning	and	Big	Data	for	Bioinformatics	(3rd	edition)	http://abierta.ugr.es	

https://spark.apache.org/docs/latest/ml-clustering.html#clustering
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html#frequent-pattern-mining

