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Reminder:	Introduction	to	this	NoteBook.

In	this	NoteBook,	you	will	be	guided	step-by-step,through	loading	a	dataset	to	the	descriptive	analysis	of	its	contents.

The	Jupyter	NoteBook	(Python)	is	an	approach	that	combines	text	blocks	(like	this	one)	and	code	blocks	or	cells.	The	great	advantage	of	this
system	is	its	interactivity	because	cells	can	be	executed	to	directly	check	the	results	they	contain.	Very	important:	the	order	of	the	instructions
is	fundamental	and	so	each	cell	of	this	NoteBook	must	be	executed	sequentially.	In	any	are	omitted,	the	program	may	throw	an	error	and	so	if
there	is	any	doubt,	you	will	have	to	start	from	the	beginning	again.

First,	it	is	very	important	to	select	"Open	in	draft	mode"	(draft	mode)	at	the	top	left	at	the	beginning.	Otherwise,	for	security	reasons,	it	will	not
be	allowed	to	execute	any	code	blocks.	When	the	first	of	the	blocks	is	executed,	the	following	message	will	appear:	"Warning:	This	NoteBook
was	not	created	by	Google".	Don't	worry,	you	can	trust	the	contents	of	the	NoteBook	and	click	on	"Run	anyway".

Let's	start!

Click	on	the	"play"	button	on	the	left	side	of	each	code	cell.	Remember	that	lines	beginning	with	a	hashtag	(#)	are	comments	and	do	not	affect
the	execution	of	the	script.

You	can	also	click	on	each	cell	and	press	"Ctrl+enter"	(Cmd+enter	on	Mac).

Each	time	you	execute	a	block,	you	will	see	the	output	just	below	it.	The	information	is	usually	always	the	last	statement,	along	with	any	
print() 	commands	present	in	the	code.
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2.	 We	see	how	to	prepare	the	data	so	that	a	model	can	learn	it.
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1.	INTRODUCTION

MLlib	is	the	machine	learning	library	for	Apache	Spark.	The	interesting	thing	about	MLlib	is	that,	because	it	is	designed	for	Spark,	its
algorithms	are	intended	for	distributed	environments,	are	highly	scalable,	and	are	fault-tolerant.

MLlib	provides	the	following	tools:

Machine	learning	algorithms:	Standard	classification,	regression,	clustering,	and	collaborative	filtering	algorithms.
Featurization:	Feature	extraction,	transformation,	dimensionality	reduction,	and	selection.
Pipelines:	A	tool	for	optimizing	machine	learning	workflows.
Persistence:	A	feature	for	saving	and	reading	algorithms,	models,	and	pipelines.
Utilities:	Linear	algebra,	statistics,	and	data	management	tools,	etc.

When	using	Python,	two	programming	interfaces	can	be	found	in	MLlib:

Spark	ML,	or	the	DataFrame	MLlib	API(application	programming	interface):	This	is	based	on	DataFrames	and	is	contained	in	the	
spark.ml 	package.	Spark	ML	has	been	the	default	interface	since	version	2.0	and	so	we	advise	you	to	use	this	one.

Spark	MLlib,	or	the	RDD	MLlib	API:	This	is	the	original	programming	interface	and	is	based	on	RDD.	This	interface	is	found	inside	the	
spark.mllib 	package,	but	is	currently	available	in	maintenance	mode	only.

The	RDD-based	API	was	changed	to	a	DataFrame-based	interface	because,	as	we	have	already	seen,	the	latter	is	faster	and	easier	to
handle.

In	this	NoteBook	we	will	continue	working	with	Spark	in	Google	Colaboratory,	and	so	the	prolegomena	are	the	same,	as	shown	below.

Looking	in	indexes:	https://pypi.org/simple,	https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement	already	satisfied:	findspark	in	/usr/local/lib/python3.8/dist-packages	(2.0.1)
Looking	in	indexes:	https://pypi.org/simple,	https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement	already	satisfied:	pyspark	in	/usr/local/lib/python3.8/dist-packages	(3.3.1)
Requirement	already	satisfied:	py4j==0.10.9.5	in	/usr/local/lib/python3.8/dist-packages	(from	pyspark)	(0.10.9.5)

As	we	saw	in	Capsule	1	of	Module	3	(Data	science	and	machine	learning:	what,	why,	and	how?),	a	data	science	project	typically	involves
preprocessing	data,	selecting	input	variables,	learning	a	model,	and	evaluating	the	results.	We	refer	to	this	as	the	data	science	life	cycle.	In
this	capsule	we	will	see	how	to	carry	out	this	life	cycle	using	Apache	Spark.

2.	PREPARING	THE	DATAFRAMES	FOR	SPARK	MLLIB

To	work	with	Spark	machine	learning	algorithms,	we	will	must	first	prepare	the	data	so	that	it	can	be	processed.	Moreover,	Spark	ML
machine	learning	algorithms	only	work	with	data	in	a	numerical	format	and	so,	any	categorical	variables	must	be	first	converted	to	a
numerical	format	.

Let's	see	some	of	the	methods	used	to	transform	variables:

#First,	we	install	Apache	Spark	with	Hadoop.
!wget	-q	http://www-eu.apache.org/dist/spark/spark-3.2.3/spark-3.2.3-bin-hadoop2.7.tgz	
!tar	xf	spark-3.2.3-bin-hadoop2.7.tgz	

#Install	the	Python	packages	to	work	with	Spark.
!pip	install	findspark	#Install	FindSpark
!pip	install	pyspark			#Install	PySpark

#Specify	the	location	of	Spark	so	that	PySpark	can	use	it.
import	findspark
findspark.init("spark-3.2.3-bin-hadoop2.7")#SPARK_HOME

#Set	the	environment	variables.
import	os
os.environ["JAVA_HOME"]	=	"/usr/lib/jvm/default-java"	
os.environ["SPARK_HOME"]	=	"/content/spark-3.2.3-bin-hadoop2.7"

#Create	a	Spark	session	to	start	working.
from	pyspark.sql	import	SparkSession
spark	=	SparkSession.builder	\
				.master("local[*]")	\
				.appName("Example	PySpark	Machine	Learning")	\
				.config("spark.sql.execution.arrow.enabled",	"true")	\
				.getOrCreate()

				

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html
https://spark.apache.org/docs/latest/mllib-guide.html#mllib-main-guide
https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html
https://spark.apache.org/docs/latest/mllib-guide.html#mllib-rdd-based-api-guide


StringIndexer :	Assigns	an	integer	to	each	possible	category.	The	value	zero	is	assigned	to	the	most	frequent	category,	1	to	the
next	one,	and	so	on.	We	must	indicate	the	column	we	want	to	index	and	the	name	of	the	output	column.	The	scheme	used	is	saved	in
the	metadata	in	case	we	want	to	undo	this	step	by	employing	the	 IndexToString() 	method.

Vector	Assembler :	This	allows	us	to	combine	a	given	list	of	columns	into	a	single	column	vector.	This	is	because	machine	learning
algorithms	accept	a	DataFrame	in	which	the	input	variables	are	in	a	single	column	and,	in	the	case	of	supervised	learning,	there	will	also
be	a	second	column	with	the	output	variable.

This	step	usually	occurs	at	the	end	of	the	data	preprocessing,	when	we	are	going	to	pass	the	training	data	to	the	machine	learning
method.

To	illustrate	the	different	examples,	we	will	work	with	the	same	skin	melanoma	supervised	learning	problem	we	have	been	using	throughout
this	course.	First,	we	will	download	the	data	inorder	to	work	with	it.	Subsequently,	we	will	index	the	output	variable.	Then,	we	will	join	the	input
variables	in	a	list	in	a	new	column,	using	`vectorAssembler'.	Finally,	we	show	only	these	two	generated	columns,	one	with	the	output	variable
in	numerical	format	and	one	with	the	input	variables	grouped.

2023-01-25	11:26:56	URL:https://doc-00-bc-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mb
p1/okbg60tvjaqre0r4n0uuofim5lqolfde/1674645975000/11180625338828972622/*/1T88IS0cg1VRsNelrrE7Q6esfQC8lA3Ht?e=down
load&uuid=27c6592c-2747-4694-b8c6-c87f32c6d9b8	[9152821/9152821]	->	"inmune_X.csv"	[1]
2023-01-25	11:26:57	URL:https://doc-0c-90-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mb
p1/95857q78hdsasrepvmb9on1hjt33uqcl/1674645975000/05131985187150583765/*/1hHQfcvrFa5Jds-9tW_X4sHjKpYKdii9s?e=down
load&uuid=de396578-79d6-4265-816e-de5fcbb175aa	[3949/3949]	->	"inmune_Y.csv"	[1]
,TYRP1,RPS4Y1,KRT6A,XIST,KRT14,KRT16,KRT5,XAGE1B,KRT6B,PAEP,KRT6C,MAGE...
0,2.7504627735116602,-9.25208847558951,0.42007312693424703,8.320289342...
1,-5.566030015996501,-8.78199418294173,0.0260954433791682,6.9285253178...
,RNASEQ-CLUSTER_CONSENHIER
0,immune
1,MITF-low
+-------------------+------------------+-------------------+----------...
|														TYRP1|												RPS4Y1|														KRT6A|										...
+-------------------+------------------+-------------------+----------...
|	2.7504627735116602|	-9.25208847558951|0.42007312693424703|		8.320289...
|	-5.566030015996501|	-8.78199418294173|	0.0260954433791682|		6.928525...
|-4.9072628904726505|	-1.86658582313499|	0.8504174516070371|-3.0423408...
|			5.54681507588922|-7.544166181117211|		-2.37481458991564|			9.47571...
|	7.0367948190278495|	0.983460294336822|	3.0978539408002996|			-3.4875...
+-------------------+------------------+-------------------+----------...
only	showing	top	5	rows

+--------------------+-----+
|												features|class|
+--------------------+-----+
|[2.75046277351166...|		1.0|
|[-5.5660300159965...|		0.0|
|[-4.9072628904726...|		0.0|
|[5.54681507588922...|		1.0|

#Download	the	data	files	in	Google	Colaboratory.	
!wget	-nv	--no-check-certificate	'https://docs.google.com/uc?export=download&id=1T88IS0cg1VRsNelrrE7Q6esfQC8lA3Ht'
!wget	-nv	--no-check-certificate	'https://docs.google.com/uc?export=download&id=1hHQfcvrFa5Jds-9tW_X4sHjKpYKdii9s'

#Display	the	header	of	the	files	and	two	rows,	in	order	to	check	that	
#they	have	been	downloaded	correctly.
!head	-3	inmune_X.csv
!head	-3	inmune_Y.csv

#Read	the	file	with	the	input	variables.
dfX	=	spark.read.csv('inmune_X.csv',inferSchema=True,	header=True)
#Read	the	file	with	the	output	variable.
dfY	=	spark.read.csv('inmune_Y.csv',inferSchema=True,	header=True)

#Join	the	two	DataFrames.
df=dfX.join(dfY,	dfX._c0	==	dfY._c0).drop('_c0')

#Drop	the	column	that	indicates	the	instance	number.
dfX=dfX.drop('_c0')
dfY=dfY.drop('_c0')

#Preprocess	the	data	that	will	be	used	in	a	machine	learning	algorithm.
from	pyspark.ml.feature	import	StringIndexer
from	pyspark.ml.feature	import	VectorAssembler

#Index	the	output	variable.
indexer	=	StringIndexer(inputCol="RNASEQ-CLUSTER_CONSENHIER",	outputCol="class")
indexed=	indexer.fit(df).transform(df)
indexed.show(5)

#Join	the	input	variables	with	VectorAssembler.
assembler	=	VectorAssembler(inputCols=dfX.columns,outputCol="features")
data	=	assembler.transform(indexed)
data.select('features','class').show(5)

http://spark.apache.org/docs/latest/ml-features.html#stringindexer
http://spark.apache.org/docs/latest/ml-features.html#indextostring
http://spark.apache.org/docs/latest/ml-features.html#vectorassembler


|[7.03679481902784...|		1.0|
+--------------------+-----+
only	showing	top	5	rows

3.	SPARK	PIPELINES

Data	science	projects	typically	involve	preprocessing	the	data,	selecting	input	variables,	learning	a	model,	and	evaluating	the	results.
Therefore,	we	must	perform	a	series	of	data	transformations	in	sequence.	Pipelines	make	it	more	convenient	to	combine	different	algorithms
in	a	single	workflow.	To	work	with	pipelines,	we	must	first	be	aware	of	some	previous	concepts:

DataFrame:	The	data	structure	used	in	our	examples	(which	we	should	already	know).

Transformers:	A	Transformer	is	an	algorithm	that	can	transform	one	DataFrame	into	another	DataFrame.	For	example,	in	the	previous
section,	we	saw	several	transformations	for	categorical	variables.	Another	example	would	be	a	Machine	Learning	model	that	transforms
a	DataFrame	with	only	input	variables	into	predictions	of	the	output	variable.	A	Transformer	is	an	abstraction	that	includes
transformations	of	the	learned	variables	or	models.	Technically,	a	Transformer	implements	the	 transform() 	method,	which	converts
one	DataFrame	into	another,	usually	by	adding	one	or	more	columns.

Estimator:	An	Estimator	is	an	algorithm	that	can	be	fitted	to	(or	learned	from)	a	DataFrame	to	produce	a	Transformer.	For	example,	a
learning	algorithm	is	an	Estimator	trained	on	a	DataFrame	(using	the	 fit() 	method)	which	then	returns	a	model.

Pipelines:	A	pipeline	chains	multiple	Transformers	and	Estimators	to	specify	a	machine	learning	workflow.	For	example,	we	could	add
indexing	and	assembly	of	input	variables	in	a	pipeline	and	then	learn	a	logistic	regression.

Parameters:	All	Transformers	and	Estimators	share	a	common	interface	for	specifying	parameters.

A	pipeline	is	a	sequence	of	stages,	where	each	one	is	either	a	Transformer	or	an	Estimator.	These	stages	are	executed	in	order,	and	the
input	DataFrame	is	transformed	at	each	stage.	For	Transformer	stages,	the	 transform() 	method	is	called	up	on	the	DataFrame.	For
Estimator	stages,	the	 fit() 	method	is	used	to	produce	a	Transformer,	and	that	Transformer’s	 transform() 	method	is	called	on	the
DataFrame.

Following	the	example	given	above,	we	could	have	performed	all	these	transformations	using	a	pipeline	as	follows:

+--------------------+-----+
|												features|class|
+--------------------+-----+
|[2.75046277351166...|		1.0|
|[-5.5660300159965...|		0.0|
|[-4.9072628904726...|		0.0|
|[5.54681507588922...|		1.0|
|[7.03679481902784...|		1.0|
+--------------------+-----+
only	showing	top	5	rows

Thus,	pipelines	optimize	the	data	preprocessing,	which	is	very	important	when	dealing	with	huge	data	volumes.

The	figure	below	shows	the	Spark	pipeline	scheme	we	followed	in	the	data	preprocessing	example.

	

#Index	the	input	variable.
indexer	=	StringIndexer(inputCol="RNASEQ-CLUSTER_CONSENHIER",	outputCol="class")

#Join	the	input	variable	using	VectorAssembler.
assembler	=	VectorAssembler(inputCols=dfX.columns,outputCol="features")

#Add	the	preprocessing	to	a	pipeline.
from	pyspark.ml	import	Pipeline
stages=[indexer,	assembler]
partialPipeline	=	Pipeline().setStages(stages)

#Build	the	model.
myPipeline	=	partialPipeline.fit(df)

#Transform	the	data	and	show	them.	
preprocessedData	=	myPipeline.transform(df)
preprocessedData.select('features','class').show(5)

https://spark.apache.org/docs/latest/ml-pipeline.html
http://spark.apache.org/docs/latest/ml-features.html


Figure	1.	Example	of	a	pipeline	diagram	in	Apache	Spark.

Once	the	data	is	preprocessed,	we	can	split	it	into	two	sets	(one	for	training	and	the	other	for	testing)	in	order	to	start	a	machine	learning
algorithm.

Train	DataFrame	:	254	instances.
Test		DataFrame	:	82	instances.

As	we	saw	in	Capsule	2	of	Module	3	(Supervised	learning),	the	use	of	cross-validation	rather	than	training	and	testing	is	preferable.	However,
when	dealing	with	big	data,	we	cannot	always	handle	the	computational	cost	of	cross-validation.	This	means	that	we	will	have	to	use	two
disjointed	sets	for	training	and	testing.	Nevertheless,	although	this	much	less	expensive	in	terms	of	processing,	it	is	less	statistically	rigorous.

4.	LEARNING	PIPELINES

As	we	have	seen,	we	have	included	all	the	preprocessing	of	our	dataset	in	a	pipeline.	Now	we	will	see	how	to	also	add	a	machine	learning
algorithm	to	this.

We	will	follow	a	supervised	learning	example	and	we	will	learn	a	logistic	regression	classifier	based	on	the	data	generated	earlier.

Following	Spark	terminology,	we	will	learn	a	Transformer	model	(which	uses	the	 transform() 	method)	using	a	logistic	regression
Estimator	(which	uses	the	 fit() 	method).	That	is,	we	will	learn	an	Estimator	with	the	training	data	and,	then	this	model	will	be	used	as	a
Transformer	on	the	test	data	to	convert	it	into	a	series	of	predictions.	In	turn,	these	predictions	will	be	used	to	calculate	the	accuracy	of	the
model.

Accuracy:	0.7926829268292683

We	can	improve	the	previous	example	by	adding	the	logistic	regression	model	to	the	pipeline,	allowing	Spark	to	optimize	the	process	further.
First,	we	will	split	the	data	into	training	and	test	sets	and	then	we	will	define	the	pipeline	and	learn	the	model.	This	model,	along	with	the	data
preprocessing	and	the	classifier,	will	then	be	applied	to	the	test	set	to	make	the	predictions	abput	the	data	and	calculate	the	proportion	of
outcomes	it	accurately	classifies.

train,	test	=	preprocessedData.select('features','class').randomSplit([0.7,	0.3],	seed	=	2020)
print("Train	DataFrame	:	"	+	str(train.count())+"	instances.")
print("Test		DataFrame	:	"	+	str(test.count())+"	instances.")

from	pyspark.ml.classification	import	LogisticRegression
#Learn	a	logistic	regression	model.
lr	=	LogisticRegression(featuresCol	=	'features',	labelCol	=	'class',	maxIter=10)
lrModel	=	lr.fit(train)

#Obtain	the	test	set	predictions.
predictions	=	lrModel.transform(test)

#Compute	the	accuracy	of	the	model.
from	pyspark.ml.evaluation	import	MulticlassClassificationEvaluator
evaluator	=	MulticlassClassificationEvaluator(labelCol="class",	metricName="accuracy")
print('Accuracy:',	evaluator.evaluate(predictions))

#Split	the	data	(without	preprocessing).



Accuracy:	0.7926829268292683

Let's	now	look	at	the	metrics	and	validation	models	that	we	can	use	in	Spark,	especially	focusing	on	supervised	learning.	It	will	be	in	the	next
capsule	we	will	talk	about	how	to	use	Spark	for	unsupervised	learning.

5.	EVALUATION	METRICS	FOR	SUPERVISED	LEARNING	MODELS

Supervised	learning	tools	can	be	divided	into	classifiers	and	regressors	depending	on	whether	the	variable	we	want	to	predict	is	discrete	or
continuous.

From	among	the	classifiers,	we	can	distinguish	those	that	are	used	for	binary	classification	(i.e.,	where	the	output	variable	has	only	two
states)	from	those	used	for	multiclass	classification	(i.e.,	in	which	the	output	variable	has	more	than	two	states).

Note	that	classifiers	that	allow	us	to	work	with	multiclass	problems	also	allow	us	to	work	with	binary	problems.	This	makes	sense	becasue	if
an	algorithm	can	discriminate	between	4	or	10	values	of	the	output	variable,	it	should	also	be	able	to	distinguish	between	2.

However,	we	can	also	use	binary	classifiers	in	multiclass	problems,	for	example,	by	using	the	One-vs-All	methodology.	This	scheme
constructs	a	base	classifier	for	each	value	of	the	output	variable,	which	then	distinguishes	the	i-th	value	from	the	rest.

We	have	already	seen	different	metrics	for	evaluating	supervised	learning	algorithms	in	previous	modules	in	this	course.	Let’s	now	see	how
to	obtain	them	with	Spark.

First,	we	will	focus	on	the	case	of	binary	classification	problems	by	applying	the	 BinaryClassificationEvaluator 	class.	This	allows
us	to	calculate	the	 areaUnderROC 	measure,	in	other	words,	the	area	under	the	ROC	curve	or	AUC,	as	seen	in	previous	modules.	<!--
calcular	dos	medidas:

1.	 areaUnderROC 	:	El	área	bajo	la	curva	ROC,	o	también	ROC	AUC.	Se	ha	visto	ya	previamente.
2.	 areaUnderPR :	Es	el	área	bajo	la	curva	Precision-Recall,	o	también	Precision-Recall	AUC.	La	curva	PR	es	el	resultado	de	dibujar	la

gráfica	entre	el	precision	y	el	recall.	Esta	gráfica	nos	permite	ver	a	partir	de	qué	recall	tenemos	una	degradación	de	la	precisión	y
viceversa.	Lo	ideal	sería	una	curva	que	se	acerque	lo	máximo	posible	a	la	esquina	superior	derecha	(alta	precisión	y	alto	recall).	Esta
métrica	es	más	apropiada	para	conjuntos	no	balanceados,	es	decir,	hay	un	reparto	desigual	acusado	entre	las	dos	clases	del	problema.

Vamos	a	usar	el	ejemplo	anterior	para	mostrar	ambas	métricas:

-->

ROC	AUC:	0.8938580799045913

We	will	now	study	multiclass	classification.	Of	note,	the	measures	used	can	also	be	computed	in	binary	classification.	In	this	case,	we	will	use
the	 MulticlassClassificationEvaluator 	class	to	obtain	the	following	measures:

train,	test	=	df.randomSplit([0.7,	0.3],	seed	=	2020)

#Index	the	output	variable.
indexer	=	StringIndexer(inputCol="RNASEQ-CLUSTER_CONSENHIER",	outputCol="class")

#Join	the	input	variables	with	VectorAssembler.
assembler	=	VectorAssembler(inputCols=dfX.columns,outputCol="features")

#Add	the	logistic	regression	model.
lr	=	LogisticRegression(featuresCol	=	'features',	labelCol	=	'class',	maxIter=10)

#Add	the	stages	to	the	pipeline.
stages=[indexer,	assembler,lr]
model	=	Pipeline().setStages(stages)

#Build	the	model:	preprocessing	+	logistic	regression.
classfier	=	model.fit(train)

#Obtain	the	predictions	on	the	test	set.
predictions	=	classfier.transform(test)

#Display	the	accuracy	of	the	model.
evaluator	=	MulticlassClassificationEvaluator(labelCol="class",	metricName="accuracy")
print('Accuracy:',	evaluator.evaluate(predictions))

from	pyspark.ml.evaluation	import	BinaryClassificationEvaluator

#We	can	now	display	the	goodness	of	model	predictions.
evaluator	=	BinaryClassificationEvaluator(labelCol="class",	metricName="areaUnderROC")
print('ROC	AUC:',	evaluator.evaluate(predictions))



accuracy :	Tthe	ratio	of	well-classified	instances.	This	refers	to	the	ratio	of	correctly	identified	instances	compared	to	the	total	number
of	instances.
weightedPrecision :	This	is	the	average	precision	(i.e.,	the	mean	precision	per	tag	is	calculated).
weightedRecall :	This	is	the	average	recall	per	tag.
f1 :	Also	called	the	F-measure,	this	metric	combines	precision	and	recall.

Let's	continue	with	the	previous	example	given	that,	even	if	it	is	a	binary	classification	problem,	we	can	still	calculate	these	metrics:

F1:	0.7902653265514936
Accuracy:	0.7926829268292683
Weighted	Precision:	0.7998323170731707
Weighted	Recall:	0.7926829268292683

When	we	are	trying	to	predict	a	continuous	variable,	the	machine	learning	model	is	known	as	a	regressor.	For	regression,	we	will	use	the	
RegressionEvaluator 	class	and	the	metrics	seen	in	Module	4	(Supervised	learning:	regression	techniques)	that	we	can	obtain	are:

rmse :	This	is	the	square	root	of	the	mean	square	error	(root	mean	square	error).	The	square	root	is	used	so	that	the	scale	of	the	errors
equals	to	the	scale	of	the	targets.

r2 :	The	coefficient	of	determination,	or	r2,	is	closely	related	to	the	mean	squared	error,	but	will	always	fall	between	-∞	and	1.

We	will	continue	with	the	previous	example,	but	bear	in	mind	that	because	is	a	binary	classification	problem,	its	results	will	not	make	much
sense.	We	are	following	this	example	through	to	see	how	it	is	used:

rmse:	0.45532084640474313
r2:	0.16875372689326185

6.	SUPERVISED	LEARNING	MODEL	VALIDATION

So	far,	we	have	validated	our	example	model	with	several	metrics,	but	using	only	one	method:	training	and	testing.	In	our	example,	we	have
split	the	data,	fit	the	model	to	the	training	set,	and	tested	it	with	the	test	set.	This	process	can	be	automated	using	the	
TrainValidationSplit 	class,	whose	parameters	are	the	classifier	model,	a	 ParamGrimBuilder 	object	(also	used	in	other

functionalities	that	we	will	not	see	in	this	course),	the	measure	used	for	the	evaluation,	and	the	train	ratio.

accuracy	:	0.8166666666666667

This	type	of	validation	is	quite	simple	and	fast,	although,	as	we	have	seen,	its	statistical	rigor	is	poor	and	its	results	depend	too	much	on	how

from	pyspark.ml.evaluation	import	MulticlassClassificationEvaluator

#Show	the	goodness	of	multiclass	model	predictions.
evaluator	=	MulticlassClassificationEvaluator(labelCol="class")
print('F1:',	evaluator.evaluate(predictions))
print('Accuracy:',	evaluator.evaluate(predictions,	{evaluator.metricName:	"accuracy"}))
print('Weighted	Precision:',	evaluator.evaluate(predictions,	{evaluator.metricName:	"weightedPrecision"}))
print('Weighted	Recall:',	evaluator.evaluate(predictions,	{evaluator.metricName:	"weightedRecall"}))

from	pyspark.ml.evaluation	import	RegressionEvaluator

#Display	the	goodness	of	the	model	predictions.
evaluator	=	RegressionEvaluator(labelCol="class")
print('rmse:',	evaluator.evaluate(predictions))
print('r2:',	evaluator.evaluate(predictions,	{evaluator.metricName:	"r2"}))

from	pyspark.ml.tuning	import	TrainValidationSplit,	ParamGridBuilder

#Obtain	an	Evaluator	class.
myEvaluator	=	MulticlassClassificationEvaluator(labelCol="class",	metricName="accuracy")

#Use	logistic	regression	for	the	evaluation.
validatorTT=	TrainValidationSplit(estimator=model,
																											estimatorParamMaps=ParamGridBuilder().build(),
																											evaluator=myEvaluator,
																											trainRatio=0.8)	#	80%	of	the	data	for	the	train	set.
validatorTT.setSeed(2020)
#Fit	the	model	to	the	train	set.
modelTT=validatorTT.fit(df)

#Display	the	accuracy	of	the	model.
print(modelTT.getEvaluator().getMetricName(),	':',modelTT.validationMetrics[0]	)



This	type	of	validation	is	quite	simple	and	fast,	although,	as	we	have	seen,	its	statistical	rigor	is	poor	and	its	results	depend	too	much	on	how
we	partition	the	data.	As	a	curiosity,	if	the	random	seed	chosen	had	been	 seed=2021 	instead	of	 seed=2020 ,	the	accuracy	results	would
have	been	8%	better.

Given	this	bias,	it	is	preferable	to	perform	at	least	10-fold	cross-validation.	However,	as	we	have	previously	mentioned,	in	the	study	of	big
data	we	will	not	always	be	able	to	choose	a	validation	type	that	is	so	expensive	in	terms	of	computational	time.

For	this	validation,	we	can	use	the	 CrossValidator 	class,	indicating	the	number	of	folds	where	before	we	had	indicated	the	percentage
of	data	for	training.

accuracy	:	0.8420281778720601
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