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Module 7 Big data

7.2 Introduction to Spark using Python
By Francisco Javier Garcia Castellano

Associate Professor at the Department of Computer Science and Artificial Intelligence (DECSAI), University of Granada.

Reminder: Introduction to this NoteBook.
In this NoteBook, you will be guided step-by-step,through loading a dataset to the descriptive analysis of its contents.

The Jupyter NoteBook (Python) is an approach that combines text blocks (like this one) and code blocks or cells. The great advantage of this

system is its interactivity because cells can be executed to directly check the results they contain. Very important: the order of the instructions
is fundamental and so each cell of this NoteBook must be executed sequentially. In any are omitted, the program may throw an error and so if
there is any doubt, you will have to start from the beginning again.

First, it is very important to select "Open in draft mode" (draft mode) at the top left at the beginning. Otherwise, for security reasons, it will not
be allowed to execute any code blocks. When the first of the blocks is executed, the following message will appear: "Warning: This NoteBook
was not created by Google". Don't worry, you can trust the contents of the NoteBook and click on "Run anyway".

Let's start!

Click on the "play" button on the left side of each code cell. Remember that lines beginning with a hashtag (#) are comments and do not affect
the execution of the script.

You can also click on each cell and press "Ctrl+enter" (Cmd+enter on Mac).

Each time you execute a block, you will see the output just below it. The information is usually always the last statement, along with any
print() commands present in the code.

INDEX

In this NoteBook:

1. We learn how to work with Apache Spark using Python.
2. We see the options available to us for workingg with data in Spark.
3. We learn how to load data from a file and work with big data.

Contents:

. An introduction to Spark using Python: PySpark.

. Spark Data Types: RDD, Dataset, and DataFrame.
A PySpark session.

. Reading data from a file.

. Working with DataFrames.
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. Applying SQL queries to DataFrames.

1. AN INTRODUCTION TO SPARK USING PYTHON: PYSPARK

Apache Spark supports different programming languages, including Python. The standard way to work with Apache Spark using Python is
through PySpark. We can use PySpark to run our Python programs using Spark or inside a (NoteBook) like this one.



There are several ways to run Spark:

e Computer cluster: You can run Spark on a computer cluster if you have access to one or the economics means to set one up. This option
is not recommended for beginners but a lab in this need.

e Cloud servers: Most cloud computing service providers offer the possibility of using Spark. The best-known examples are the cloud
services offered iby the Google Cloud Service, Microsoft Azure, Amazon Elastic MapReduce (EMR), or DataBricks (which allows you to
set up a very basic free account). This is a good option that does not require a large investment and can be adjusted to changing
research needs.

We can also use Spark on our personal computer, but this will only be useful for learning or program development and debugging. We will not
be able to use our personal computer for real big data problems, and if we can, it means that the problem probably does not really involve big
data.

The examples that we will see in this course are run in Google Colaboratory which does not have high computational capabilities but is
sufficiente for the examples and exercises that we will see. You can check these capabilities with the following code snippets.

!cat /proc/cpuinfo | grep model\ name #This code shows the number of processors.

!cat /proc/meminfo | grep MemTotal #This code shows the total amount of RAM memory available.
model name : Intel(R) Xeon(R) CPU @ 2.20GHz

model name : Intel(R) Xeon(R) CPU @ 2.20GHz

MemTotal: 13297200 kB

1.1. Install Java, Apache Spark, PySpark, and Findspark

The Python programs we are going to see will require you to install Java and Apache Spark. Java is required to run Spark and if we want to
work on our personal computers, we need to install both Java and Spark. However, to avoid having to install anything on our computer, we
will use Google Colaboratory. Thus, with the following code, we will install Apache Spark inside Google Colaboratory (Java is already
installed).

#Download Spark with Hadoop.

'wget -q --show-progress http://www-eu.apache.org/dist/spark/spark-3.2.3/spark-3.2.3-bin-hadoop2.7.tgz
#Install Spark.

!tar xf spark-3.2.3-bin-hadoop2.7.tgz

spark-3.2.3-bin-had 100%[ >] 260.23M 28.0MB/s in 10s

Now we install PySpark which allows us to use Spark from Python. We must also install Findspark , a Python library that helps us to
use Spark in a NoteBook.

!pip install pyspark  #Install PySpark.
'pip install findspark #Install FindSpark.

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting pyspark
Downloading pyspark-3.3.1.tar.gz (281.4 MB)

281.4/281.4 MB 4.5 MB/s eta
Preparing metadata (setup.py) ... done
Collecting py4j==0.10.9.5
Downloading py4j-0.10.9.5-py2.py3-none-any.whl (199 kB)
199.7/199.7 KB 15.3 MB/s eta
Building wheels for collected packages: pyspark
Building wheel for pyspark (setup.py) ... done
Created wheel for pyspark: filename=pyspark-3.3.1-py2.py3-none-any.whl size=281845512 sha256=38aba41424849c80ad
0f57dcc79c117ff82757633e52c84abce2c67f7773el5e
Stored in directory: /root/.cache/pip/wheels/43/dc/11/ec201cd671da62fa9c5cc77078235e40722170ceba231d7598
Successfully built pyspark
Installing collected packages: py4j, pyspark
Successfully installed py4j-0.10.9.5 pyspark-3.3.1
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting findspark
Downloading findspark-2.0.1-py2.py3-none-any.whl (4.4 kB)
Installing collected packages: findspark
Successfully installed findspark-2.0.1

1.2. First Spark Script


https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Cloud_computing
https://databricks.com/try-databricks
https://spark.apache.org/docs/latest/api/python/index.html
https://github.com/minrk/findspark

Once all the programs and libraries are installed, we must then give values to the environment variables to indicate where Java and Spark
are installed. We can modify these environment variables when we install Spark and Java. The method for giving them values depends on
our operating system (Windows, Mac, Linux). However, in these examples, we will do it from Python.

Also, note that we must specify the complete path where both programs are installed.

#Set the environment variables.

import os
os.environ["JAVA HOME"] = "/usr/lib/jvm/default-java"
os.environ["SPARK HOME"] = "/content/spark-3.2.3-bin-hadoop2.7"

All that remains is to tell findspark which folder Spark is in so that it can link with Python.

#Indicate where Spark 1is.
import findspark
findspark.init("spark-3.2.3-bin-hadoop2.7")#SPARK HOME

Once we have everything installed and configured in our work environment, we can begin to work with Spark from Python. We will have to
create a session when at the start of any program in PySpark.

#(Create a Spark session to start working.
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[2]").getOrCreate()

Now everything is ready for us to start using Spark. We will create a small data set (in this case, a set of nucleotides) with a Pandas
DataFrame. We will convert it to a Spark DataFrame to check that everything works. Next, we will show the Dataframe contents.

import random
import pandas as pd

#Create a random string of nucleotides.
nucleotidelList=[{"ADN": random.choice("ATCG")} for x in range(1000)]

#Convert the nucleotide string to a Pandas DataFrame.
df = pd.DataFrame(nucleotidelList)

#Convert the Pandas DataFrame to Spark DataFrame and display it.
ddf = spark.createDataFrame(df)
ddf.show(10)

+---+
| ADN |
+---+
| Gl
| T
| G|
| €l
| Al
| G|
| Al
| Al
| G|
| TI
+---+
only showing top 10 rows

2. SPARK DATA TYPES: RDD, DATASET, AND DATAFRAME

Three data types can be used in Spark with big data: RDD, Dataset, and DataFrame. Thus, in principle, there are three different ways to work

in Spark, which can be a bit confusing. Let's now take a look at their differences.

2.1. Resilient distributed dataset (RDD)

As we have already seen, resilient distributed datasets (RDD) -a set of objects spread across the various nodes in a cluster- are the basic
means of data abstraction in Spark. RDDs were used from Spark version 1.0, and regardless of the type of data we use (DataFrame or
Dataset), internally, Spark always uses RDDs. They are a simple and flexible data type, which allows us to work with unstructured data ( i.e.,

data with no defined structure).



2.2. DataFrame

DataFrame appeared in Spark version 1.3 and is a modification of RDD that allows us to define a schema on the data. This means that we
can see the data in a table format and thereby making it easier to work with. Another important feature is that it is structured data, and so the
algorithms that work with it are more optimized and can run faster than RDD.

2.3. Dataset

Dataset is a modification of DataFrame that appeared in Spark version 1.6 which was designed to detect programming errors earlier.
However, the way of working with Dataset is almost identical to the methods used to work with DataFrame.

2.4. Which one should we use?

In this course, we will work with data in a table form (structured data), which is the most common data format in the field of machine learning.
Moreover, Dataset does not exist in Python due to the characteristics of this programming language. Therefore, it is best to use DataFrame
because is faster than RDD.

The DataFrames in Spark are very similar to Pandas DataFrames presented in previous modules, except for one notable difference. Spark
DataFrames can be spread across multiple computers while Pandas DataFrames can only be present on a single computer. Nonetheless, we
can easily and efficiently change one data type to the other data type by employing Apache Arrow, as long as the data fits in the memory of
only one computer. Let's see how:

# As before, we store the nucleotide string in a Pandas DataFrame.
pdf = pd.DataFrame(nucleotidelList)

# Convert the Pandas DataFrame to Spark.
sdf = spark.createDataFrame(pdf)

# Convert the Spark DataFrame to a Pandas DataFrame and show it.
psdf = sdf.select("*").toPandas()
psdf.head()

ADN
0 G
1 T
2 G
3 C
4 A

3. A PYSPARK SESSION.

The gateway to all Spark functionality is the SparkSession class. To create a session in Spark, we use SparkSession.builder .In
computer science, a session is a semi-permanent interactive information exchange between two or more entities, in our case between Spark
and Python. The most common attributes used with SparkSession.builder are:

e appName(name) : Sets a name to the script.

e config(key, value) : Sets a value to a configuration property. All the configuration options can be found in the Spark configuration
documentation.

e master(value) : Indicates the internet address (URL) of the master node of the computer cluster. It can be executed locally with a
single execution thread on a personal computer with Local . With local[n] itis executed locally with n threads. Finally, if we use
local[*] , it runs Spark on a personal computer with as many threads as the machine will allow.

e getOrCreate() : This method gets an existing Spark session or, if there are none, it creates one.

SparkSession has been the Python gateway to Spark since Apache Spark version 2.0. Previously, SparkContext or SQLContext were
used to access the different functionalities.

#Create a Spark session to start working.
from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local[*]") \
.appName("PySpark basic example") \


https://spark.apache.org/docs/latest/sql-pyspark-pandas-with-arrow.html
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.SparkSession.Builder
http://spark.apache.org/docs/latest/configuration.html

.config("spark.some.config.option", "some-value") \
.getOrCreate()

4. READING DATA FROM A FILE

Here we will learn how to load a file in a Spark DataFrame. For this purpose, we will work with the problem seen in Module 5, Capsule 2
(Standard classification methods)- a supervised learning problem for skin melanoma prediction.

First, let's load the data into Google Colaboratory.

#Download the data files in Google Colaboratory.
'wget -nv -c --no-check-certificate 'https://docs.google.com/uc?export=download&id=1J3jo-YRKGX11BjAO-B8U1ZJibHYE/
'wget -nv -c --no-check-certificate 'https://docs.google.com/uc?export=download&id=1hHQfcvrFa5Jds-9tW X4sHjKpYKd:

#Show the header of the files and two rows, in order to check that
#they have been downloaded correctly.

'head -3 inmune X.csv

'head -3 inmune Y.csv

2023-01-25 11:58:46 URL:https://doc-0g-90-docs.googleusercontent.com/docs/securesc/hadro937gcuc717deffksulhg5h7mb
pl/m8r26hollgc491j2jnv13nholb584p3b/1674647925000/05131985187150583765/*/133j0-YRKGX11BjAO-B8U1ZJibHYEAbmL?e=down
load&uuid=445648f9-ead0-465f-80cl-e18a03725bff [9152821/9152821] -> "inmune X.csv" [1]

2023-01-25 11:58:47 URL:https://doc-0c-90-docs.googleusercontent.com/docs/securesc/hadro937gcuc717deffksulhg5h7mb
pl/i4ntdk7hdb62egoq4dfu9jplt10j443j/1674647925000/05131985187150583765/*/1hHQfcvrFa5]ds-9tW X4sHjKpYKdii9s?e=down
load&uuid=86b935d7-da43-45d8-9c07-54afabbeebb7 [3949/3949] -> "inmune Y.csv" [1]

, TYRP1,RPS4Y1,KRT6A,XIST,KRT14,KRT16,KRT5,XAGE1B,KRT6B, PAEP,KRT6C,MAGE. . .

0,2.7504627735116602, -9.25208847558951,0.42007312693424703,8.320289342. ..

1,-5.566030015996501, -8.78199418294173,0.0260954433791682,6.9285253178. . .

,RNASEQ-CLUSTER CONSENHIER

0, immune

1,MITF-low

Once the data is loaded onto a disk, we will use a DataFrameReader to read both files.

To read the first file, methods with different options are used. For example, with load () we indicate the name of the file, format ()
indicates that it is a CSV file, option() is used to get the schema of the data ( inferSchema ) and confirm that the file has a first header
row with the name of the columns ( header ). In addition, many more options can be specified, such as encoding, separators, comments,

etc.

Furthermore, we can also open different file type formats ( JSON, parquet, orc, libsvm, CSV, text )locally, or from a database
(using JDBC ) or using HDFS.

#Read the input variables.

dfX = spark.read \
.format("csv") \
.option("inferSchema",True) \
.option("header", True) \
.load("inmune X.csv")

dfX.show(3)

#Read the output variable.

dfY = spark.read.csv('inmune Y.csv',
inferSchema=True,
header=True)

dfY.show(3)

LR N R R R LR R R R LR E R R teemee- .
| co] TYRP1| RPS4Y1| KRT6A |

R e e B Fommmm-- e
| ©] 2.7504627735116602|-9.25208847558951|0.420073126934247063| 8.320...
| 1] -5.566030015996501|-8.78199418294173| 0.0260954433791682| 6.928...
| 2]-4.9072628904726505|-1.86658582313499| 0.8504174516070371|-3.0423...
+---F-------ccccc oo n +------------c---- +------c--mmcnm - +---=-=-=-- .
only showing top 3 rows

e +
| _cO|RNASEQ-CLUSTER CONSENHIER|
R +
| 0] immune|
| 1] MITF-Tlow|
| 2] MITF-low|
R e +

only showing top 3 rows


https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameReader

5. WORKING WITH DATAFRAMES

Now that we have our data in Spark, let's learn how to work with it.

5.1. Exploring DataFrames

To see how many rows we have, we can use the .count() method. To see the number of columns (variables) we have the .columns
property to see their size. To display the name and the data type of each column (that is, the schema), we can use the .printSchema()
method.

Finally, to show the DataFrame we can use the .show() method, as before. We can also use it in combination with the .describe()
method that calculates a statistical summary of the DataFrame.

#Display the number of input variables and the number of instances.
print ("We have", len(dfX.columns)-1, "input variables and" ,
dfX.count(), "instances.")

#Show the schema and a statistical summary of the output variable.
print ("\nSchema of dfY:")

dfY.printSchema()

print ("\nStatistical summary of dfY:")

dfY.describe().show()

We have 1491 input variables and 336 instances.
Schema of dfY:
root

|-- cO: integer (nullable = true)
| -- RNASEQ-CLUSTER CONSENHIER: string (nullable = true)

Statistical summary of dfY:

o - R e +
| summary | _CO|RNASEQ-CLUSTER_CONSENHIER|
LR R R +
| count]| 336 336
| mean| 167.5| null|
| stddev|97.13907555664713| null|
| min| 0] MITF-low|
| max | 335] immune|
o T R T +

To work with DataFrames we can select one or several columns using the select() method. To identify the columns, we can use a string
with the column name; the column name as a property of the DataFrame;the DataFrame as a dictionary, indicating the column name as the
key; or the DataFrame indicating the column number and considering that we start counting from zero.

#There are several ways to get second, fourth and sixth input variables.
dfX.select('TYRP1', 'KRT6A"', 'KRT14"').show(5) #column name string.

dfX.select (dfX.TYRP1,dfX.KRT6A,dfX.KRT14).show(5) #column name as a property.

dfX.select (dfX['TYRP1'],dfX['KRT6A"'],dfX['KRT14']).show(5) # column name as dictionary key.
dfX.select(dfX[1],dfX[3],dfX[5]).show(5) #using the column number.

oo R R +
| TYRP1| KRT6A | KRT14|
L R R +
| 2.7504627735116602|0.42007312693424703|-2.8987916629252592 |
| -5.566030015996501| 0.0260954433791682| -0.531967458719549 |
| -4.9072628904726505| 0.8504174516070371| 0.375261221152995|
| 5.54681507588922| -2.37481458991564|-0.7988656239782429 |
| 7.0367948190278495| 3.0978539408002996| 1.4826106729146697 |
R R R L R +
only showing top 5 rows

e e e e +
| TYRP1| KRT6A | KRT14|
o oo oo +
| 2.7504627735116602|0.42007312693424703| -2.8987916629252592 |
| -5.566030015996501| 0.0260954433791682| -0.531967458719549 |
|-4.9072628904726505| 0.8504174516070371| 0.375261221152995|
|  5.54681507588922| -2.37481458991564|-0.7988656239782429 |
| 7.0367948190278495| 3.0978539408002996| 1.4826106729146697 |
B O e e +



only showing top 5 rows

L e e R +
| TYRP1| KRT6A | KRT14|
R I R R +
| 2.7504627735116602|0.42007312693424703|-2.8987916629252592 |
| -5.566030015996501| 0.0260954433791682| -0.531967458719549|
| -4.9072628904726505| 0.8504174516070371| 0.375261221152995|
| 5.54681507588922| -2.37481458991564|-0.7988656239782429|
| 7.0367948190278495| 3.0978539408002996| 1.4826106729146697 |
R I B T +
only showing top 5 rows

R R R +
| TYRP1| KRT6A | KRT14|
R I R R R +
| 2.7504627735116602|0.42007312693424703|-2.8987916629252592 |
| -5.566030015996501| 0.0260954433791682| -0.531967458719549|
| -4.9072628904726505| 0.8504174516070371| 0.375261221152995|
| 5.54681507588922| -2.37481458991564|-0.7988656239782429|
| 7.0367948190278495| 3.0978539408002996| 1.4826106729146697 |
R I B T +
only showing top 5 rows

We can also filter the data we want to display with the filter() method, group common values with the groupby () method, or sort the
data with the sort() method.

#0btain the rows where the value of TYRP1 is positive.
dfX.filter (dfX.TYRP1>0).show(5)

#Group the different values of the output variable.
dfY.groupby (dfY[1]).count().show(5)

#Sort the values of the TYRP1 variable.
dfX.select(dfX[0], 'TYRP1').sort('TYRP1').show(5)

L R I I ] L I I R I I +---e---
| cO] TYRP1| RPS4Y1| KRT6A |

LR R ) L AR R R L LR +-------
| 0]2.7504627735116602| -9.25208847558951|0.42007312693424703|8.32028. ..
| 3| 5.54681507588922|-7.544166181117211| -2.37481458991564| 9.4757...
| 4]|7.0367948190278495| 0.983460294336822| 3.0978539408002996| -3.487...
| 6] 5.34314482098534| 3.06441128263618|-0.0722837209380733| -3.487...
| 11| 6.94320218627926| 0.504180947256865 | 5.12460456547909| 8.4293...
L R L AR R L LR +-------
only showing top 5 rows

TP R +
| RNASEQ-CLUSTER_CONSENHIER|count |
R TR - +
[ MITF-low| 168]|
| immune| 168|

oo o +
oo +
| cO| TYRP1|
R T +

| 41]-9.3022776907826|
|110|-9.3022776907826 |
| 14]-9.3022776907826 |
|210]-9.3022776907826 |
| 73]1-9.3022776907826 |
B TR +
only showing top 5 rows

5.2 Modifying DataFrames

With the withColumn() method, we can change the column type, change its values, and can also be used to create a new column. To
rename a column, we will use the withColumnRenamed() method.

To delete one or more columns the drop() method canbe used, and with dropDuplicates() we can delete duplicate rows, leaving

only one example of each.

With the join() method we can join tables.



#Change the first column of dfY from Integer to Double.
dfY.withColumn(" c0",dfY. cO.cast("Double")).show(5)

#Multiply the values of the first column of dfY by two.
dfY.withColumn(" c0",dfY. c0*2).show(5)

#Add a column with the values of the first column of dfY multiplied by 3.
dfY.withColumn("three",dfY. c0*3).show(5)

#Change the name of the output variable.
dfY=dfY.withColumnRenamed ("RNASEQ-CLUSTER CONSENHIER","class")
dfY.show(5)

#Remove the first column of dfY.
dfY.drop(' c0"').show(5)

#Delete the first column of dfY and then remove repeated rows.
dfY.drop(' c0').dropDuplicates().show(5)

#Add the output varible to the input variable table.
dfX.join(dfY, dfX. c® == dfY. c0).show(5)

L I L +
| cO|RNASEQ-CLUSTER CONSENHIER|

L T +

10.0] immune|

|1.0] MITF-low|

|2.0] MITF-low|

|3.0] immune|

14.0] immune|

R e +

only showing top 5 rows

L e +

| cO|RNASEQ-CLUSTER CONSENHIER|

L T +

| 0] immune|

| 2] MITF-Tlow|

| 4] MITF-Tlow|

| 6] immune|

| 8] immune|

B e +

only showing top 5 rows

L e +----- +
| cO|RNASEQ-CLUSTER CONSENHIER|three|
L +--- - +
| 0] immune| 0]
| 1] MITF-low| 3
| 2] MITF-low| 6|
| 3] immune| 9|
| 4] immune| 12|
B e +----- +

only showing top 5 rows

R R +
|_co| class|
B +
0| dimmune|
1|MITF-low|

3| immune|
4| immune|
R +
only showing top 5 rows

I
I
| 2|MITF-low|
I
I

oo +
| class|
o +
| immune]
|MITF-low|
|[MITF-low|
| immune|
| immune|
e +

oo +
| class|
R +
|[MITF-low|
| immune]



LR R R R L R R L R +------
| _co| TYRP1| RPS4Y1| KRT6A |

R T R T e ces
| 0] 2.7504627735116602| -9.25208847558951|0.42007312693424703| 8.32...
| 1] -5.566030015996501| -8.78199418294173| 0.0260954433791682| 6.92...
|  2]-4.9072628904726505| -1.86658582313499| 0.8504174516070371|-3.042...
| 3] 5.54681507588922|-7.544166181117211| -2.37481458991564 | 9.4...
| 4] 7.0367948190278495| 0.983460294336822| 3.0978539408002996 | -3,
R e R T B e ces
only showing top 5 rows

6. APPLYING SQL QUERIES TO DATAFRAMES.

We can work with DataFrames using Structured Query Language (SQL) queries in the same way we previously worked with DataFrames in

Spark. Since this is an introductory course, we do not assume any SQL knowledge here, but if you have knowledge of this language, using it

may be the most convenient option. To work with DataFrames as tables, we will have to define the views with the
createOrReplaceTempView() method. Once we have defined a view, we can use the sql() method to work comfortably using SQL.

#Register the DataFrame as a SQL temporary view so that we can query it using SQL.
dfX.createOrReplaceTempView("inputVarsTable")
dfY.createOrReplaceTempView("outputVarTable")

#Show the tables.
spark.sql("SHOW TABLES").show()

#Equivalent to dfX.select('TYRP1', 'KRT6A', 'KRT14"').show(5)
sqlDF = spark.sql("SELECT TYRP1,KRT6A,KRT14 FROM inputVarsTable")
sqlDF.show(5)

#Equivalent to dfY.groupby(dfY[1]).count().show(5)
spark.sql("SELECT class, count(class) FROM outputVarTable GROUP BY class").show(5)

#Equivalent to dfX.select(dfX[0], 'TYRP1').sort('TYRP1').show(5)
spark.sql("SELECT cO,TYRP1 FROM inputVarsTable ORDER BY TYRP1").show(5)

#Equivalent to dfX.join(dfY, dfX. cO == dfY. c0).show(5)
spark.sql("SELECT * FROM inputVarsTable,outputVarTable WHERE inputVarsTable. cO == outputVarTable. c0").show(5)

o T R R +
| namespace| tableName|isTemporary|
Fomememaa Fommmmmeeeaaaa Fomememeeaa +
| | inputvarstable| true|
| |outputvartable| true|
e D R L +
Fommmmmmeeeeeeeaeaas Fommmemme e eaaaaa Fommmemeeeeeeaeeaaas +
| TYRP1| KRT6A | KRT14|
L I B L T Fommmm e a s +

| 2.7504627735116602|0.42007312693424703|-2.8987916629252592 |
| -5.566030015996501| 0.0260954433791682| -0.531967458719549 |
| -4.9072628904726505| 0.8504174516070371| 0.375261221152995|
| 5.54681507588922| -2.37481458991564|-0.7988656239782429 |
| 7.0367948190278495| 3.0978539408002996| 1.4826106729146697 |
R R L R +
only showing top 5 rows

o - - oo +
| class|count(class) |
o R +
|[MITF-low| 168
| immune| 168
LT R +
L +
|_co] TYRP1|
R S e +

| 41]-9.3022776907826|
|110|-9.3022776907826 |
| 14]-9.3022776907826 |
|210]-9.3022776907826 |
| 73]1-9.3022776907826 |
R e +
only showing top 5 rows

oo e o FrR .
| co] TYRP1| RPS4Y1| KRT6A |



R L L e T T E e oo oo FRIe——

0] 2.7504627735116602| -9.25208847558951|0.42007312693424703| 8.32...
1| -5.566030015996501| -8.78199418294173| 0.0260954433791682| 6.92...
2|-4.9072628904726505| -1.86658582313499| 0.8504174516070371|-3.042...
3| 5.54681507588922| -7.544166181117211| -2.37481458991564 | 9.4...
4] 7.0367948190278495| 0.983460294336822| 3.0978539408002996 | -3,

L R oo - - - -
only showing top 5 rows
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