
Module	6	-	Unsupervised	learning:	clustering	and	association	rules

6.3	Association	Rules	(ARs)
Authors:

By	Dra.	Elena	Ruiz	Sánchez

Developer	at	Revvity.

By	Dr.	Jesús	Alcalá	Fernández

Full	Professor	at	the	University	of	Granada,	Andalusian	Interuniversity	Institute	in	Data	Science	and	Computational	Intelligence	(DasCI).

INDEX

In	this	notebook:

1.	 We	discover	examples	of	variables	that	we	can	use	to	extract	associations	and	to	learn	more	about	distinct	groups	of	patients.
2.	 We	learn	how	to	transform	our	dataset	into	a	set	of	transactions.
3.	 We	examine	how	to	decide	the	support	and	confidence	thresholds	for	our	problem	using	graphs.
4.	 We	establish	how	to	use	the	MLXTEND	(http://rasbt.github.io/mlxtend/)	library	to	extract	frequent	itemsets	and	association	rules.
5.	 We	study	different	ways	to	analyze	our	rules	based	on	several	types	of	graphs.

Contents:

1.	 Description	of	the	problem
2.	 Reading	and	processing	the	data
3.	 Obtaining	frequent	itemsets
4.	 Extraction	and	analysis	of	association	rules

INSTALLING	LIBRARIES

http://rasbt.github.io/mlxtend/

In	[]:

#	Installing	mlxtend	library
!pip	install	--upgrade	mlxtend	#	Exclamation	point	!	is	necessary	because	we	are	in	a	notebook
#pip	install	--upgrade	mlxtend	#	Use	this	line	instead	if	you	want	to	install	mlxtend	outside	a	notebook

Requirement	already	satisfied:	mlxtend	in	/usr/local/lib/python3.10/dist-packages	(0.22.0)
Collecting	mlxtend
		Downloading	mlxtend-0.23.1-py3-none-any.whl	(1.4	MB)
					━━	1.4/1.4	MB	13.8	MB/s	eta	0:00:00
Requirement	already	satisfied:	scipy>=1.2.1	in	/usr/local/lib/python3.10/dist-packages	(from	mlxtend
)	(1.11.4)
Requirement	already	satisfied:	numpy>=1.16.2	in	/usr/local/lib/python3.10/dist-packages	(from	mlxten
d)	(1.25.2)
Requirement	already	satisfied:	pandas>=0.24.2	in	/usr/local/lib/python3.10/dist-packages	(from	mlxte
nd)	(1.5.3)
Requirement	already	satisfied:	scikit-learn>=1.0.2	in	/usr/local/lib/python3.10/dist-packages	(from	
mlxtend)	(1.2.2)
Requirement	already	satisfied:	matplotlib>=3.0.0	in	/usr/local/lib/python3.10/dist-packages	(from	ml
xtend)	(3.7.1)
Requirement	already	satisfied:	joblib>=0.13.2	in	/usr/local/lib/python3.10/dist-packages	(from	mlxte
nd)	(1.3.2)
Requirement	already	satisfied:	contourpy>=1.0.1	in	/usr/local/lib/python3.10/dist-packages	(from	mat
plotlib>=3.0.0->mlxtend)	(1.2.0)
Requirement	already	satisfied:	cycler>=0.10	in	/usr/local/lib/python3.10/dist-packages	(from	matplot
lib>=3.0.0->mlxtend)	(0.12.1)
Requirement	already	satisfied:	fonttools>=4.22.0	in	/usr/local/lib/python3.10/dist-packages	(from	ma
tplotlib>=3.0.0->mlxtend)	(4.50.0)
Requirement	already	satisfied:	kiwisolver>=1.0.1	in	/usr/local/lib/python3.10/dist-packages	(from	ma
tplotlib>=3.0.0->mlxtend)	(1.4.5)
Requirement	already	satisfied:	packaging>=20.0	in	/usr/local/lib/python3.10/dist-packages	(from	matp
lotlib>=3.0.0->mlxtend)	(24.0)
Requirement	already	satisfied:	pillow>=6.2.0	in	/usr/local/lib/python3.10/dist-packages	(from	matplo
tlib>=3.0.0->mlxtend)	(9.4.0)
Requirement	already	satisfied:	pyparsing>=2.3.1	in	/usr/local/lib/python3.10/dist-packages	(from	mat
plotlib>=3.0.0->mlxtend)	(3.1.2)
Requirement	already	satisfied:	python-dateutil>=2.7	in	/usr/local/lib/python3.10/dist-packages	(from	
matplotlib>=3.0.0->mlxtend)	(2.8.2)
Requirement	already	satisfied:	pytz>=2020.1	in	/usr/local/lib/python3.10/dist-packages	(from	pandas>
=0.24.2->mlxtend)	(2023.4)
Requirement	already	satisfied:	threadpoolctl>=2.0.0	in	/usr/local/lib/python3.10/dist-packages	(from	
scikit-learn>=1.0.2->mlxtend)	(3.3.0)
Requirement	already	satisfied:	six>=1.5	in	/usr/local/lib/python3.10/dist-packages	(from	python-date
util>=2.7->matplotlib>=3.0.0->mlxtend)	(1.16.0)
Installing	collected	packages:	mlxtend
		Attempting	uninstall:	mlxtend
				Found	existing	installation:	mlxtend	0.22.0
				Uninstalling	mlxtend-0.22.0:
						Successfully	uninstalled	mlxtend-0.22.0
Successfully	installed	mlxtend-0.23.1

In	[]:

#	Installing	rpy2	library	to	combine	R	and	Python
#!apt-get	update
#!apt-get	install	r-base
!pip	install	rpy2==3.5.1
#	Loading	rpy2.ipython	extension
%load_ext	rpy2.ipython

In	[]:

#	Installing	R	libraries	that	we	will	need	later	on
%%R
#	Installing	chorddiag	library	from	a	GitHub	repository
devtools::install_github("mattflor/chorddiag")
#	Installing	RColorBrewer	library	to	use	several	color	palettes
install.packages('RColorBrewer')

Collecting	rpy2==3.5.1
		Downloading	rpy2-3.5.1.tar.gz	(201	kB)
					━━	201.7/201.7	kB	6.4	MB/s	eta	0:00:00
		Preparing	metadata	(setup.py)	...	done
Requirement	already	satisfied:	cffi>=1.10.0	in	/usr/local/lib/python3.10/dist-packages	(from	rpy2==3
.5.1)	(1.16.0)
Requirement	already	satisfied:	jinja2	in	/usr/local/lib/python3.10/dist-packages	(from	rpy2==3.5.1)	
(3.1.3)
Requirement	already	satisfied:	pytz	in	/usr/local/lib/python3.10/dist-packages	(from	rpy2==3.5.1)	(2
023.4)
Requirement	already	satisfied:	tzlocal	in	/usr/local/lib/python3.10/dist-packages	(from	rpy2==3.5.1)	
(5.2)
Requirement	already	satisfied:	pycparser	in	/usr/local/lib/python3.10/dist-packages	(from	cffi>=1.10
.0->rpy2==3.5.1)	(2.21)
Requirement	already	satisfied:	MarkupSafe>=2.0	in	/usr/local/lib/python3.10/dist-packages	(from	jinj
a2->rpy2==3.5.1)	(2.1.5)
Building	wheels	for	collected	packages:	rpy2
		Building	wheel	for	rpy2	(setup.py)	...	done
		Created	wheel	for	rpy2:	filename=rpy2-3.5.1-cp310-cp310-linux_x86_64.whl	size=314937	sha256=7b8e7f
30efd601634fdb4c2bc05c52ee3dc2fda69344390211172123adcfeb57
		Stored	in	directory:	/root/.cache/pip/wheels/73/a6/ff/4e75dd1ce1cfa2b9a670cbccf6a1e41c553199e9b25f
05d953
Successfully	built	rpy2
Installing	collected	packages:	rpy2
		Attempting	uninstall:	rpy2
				Found	existing	installation:	rpy2	3.4.2
				Uninstalling	rpy2-3.4.2:
						Successfully	uninstalled	rpy2-3.4.2
Successfully	installed	rpy2-3.5.1

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	Downloading	GitHub	repo	mattflor/chorddia
g@HEAD

These	packages	have	more	recent	versions	available.
It	is	recommended	to	update	all	of	them.
Which	would	you	like	to	update?

	1:	All																																
	2:	CRAN	packages	only																	
	3:	None																															
	4:	highr					(0.9				->	0.10)	[CRAN]
	5:	digest				(0.6.34	->	0.6.35)	[CRAN]
	6:	sass						(0.4.8		->	0.4.9)	[CRAN]
	7:	xfun						(0.41			->	0.42)	[CRAN]
	8:	tinytex			(0.49			->	0.50)	[CRAN]
	9:	bslib					(0.6.1		->	0.6.2)	[CRAN]
10:	rmarkdown	(2.25			->	2.26)	[CRAN]

Enter	one	or	more	numbers,	or	an	empty	line	to	skip	updates:	

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	Installing	1	packages:	htmlwidgets

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	Installing	package	into	‘/usr/local/lib/R
/site-library’
(as	‘lib’	is	unspecified)

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	trying	URL	'https://cran.rstudio.com/src/
contrib/htmlwidgets_1.6.4.tar.gz'

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	Content	type	'application/x-gzip'
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:		length	868895	bytes	(848	KB)

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	downloaded	848	KB

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	The	downloaded	source	packages	are	in
	 ‘/tmp/Rtmp4lAdt5/downloaded_packages’
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	

──	R	CMD	build	───
*	checking	for	file	‘/tmp/Rtmp4lAdt5/remotes1e068920de6/mattflor-chorddiag-1688d72/DESCRIPTION’	...	
OK
*	preparing	‘chorddiag’:
*	checking	DESCRIPTION	meta-information	...	OK
*	checking	for	LF	line-endings	in	source	and	make	files	and	shell	scripts
*	checking	for	empty	or	unneeded	directories
Omitted	‘LazyData’	from	DESCRIPTION
*	building	‘chorddiag_0.1.3.tar.gz’

1.	INTRODUCTION	TO	THE	PROBLEM

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	Installing	package	into	‘/usr/local/lib/R
/site-library’
(as	‘lib’	is	unspecified)

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	Installing	package	into	‘/usr/local/lib/R
/site-library’
(as	‘lib’	is	unspecified)

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	trying	URL	'https://cran.rstudio.com/src/
contrib/RColorBrewer_1.1-3.tar.gz'

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	Content	type	'application/x-gzip'
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:		length	11638	bytes	(11	KB)

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	=
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	downloaded	11	KB

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	

WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	The	downloaded	source	packages	are	in
	 ‘/tmp/Rtmp4lAdt5/downloaded_packages’
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	
WARNING:rpy2.rinterface_lib.callbacks:R[write	to	console]:	

We	have	already	seen	how,	even	when	starting	from	the	same	problem,	we	can	apply	different	machine	learning	techniques	according	to	the	type	of	task
we	are	interested	in	solving.	In	the	previous	capsule	we	saw	that	clustering	can	be	used	to	obtain	different	groups	of	patients	based	on	gene	expression
information.	The	authors	of	the	original	study	performed	a	clustering	analysis	of	this	nature	and	obtained	three	groups	of	patients	with	significantly	different
survival	times.	In	this	capsule	we	will	focus	on	using	association	rules	(ARs)	to	complement	the	information	about	these	patient	groups	and	to	characterize
potential	subgroups.

To	accomplish	this,	we	will	use	data	other	than	gene	expression	data	to	obtain	more	information	about	the	characteristics	of	the	patients	in	each	of	these
groups	and	to	test	whether	differences	in	the	expression	of	certain	genes	are	also	associated	with	differences	in	other	variables.	Discovering	whether	such
connections	exist	between	variables	and	identifying	them	helps	us	to	better	understand	the	disease	under	study.	They	may	also	allow	us	to	identify
previously	unknown	relationships	that	can	serve	as	a	basis	for	new	hypotheses	to	improve	the	prevention,	detection,	or	treatment	of	the	disease.

Specifically,	here	we	will	work	with	6	different	variables.	One	of	them	indicates	the	cluster	in	which	the	instance	was	included	based	on	gene	expression
levels,	while	the	other	5	represent	variables	that	can	provide	us	with	additional	information	about	the	characteristics	of	the	patients	included	in	each
cluster.	These	variables	are:

MUTATIONSUBTYPES:	the	development	of	targeted	therapies	for	patients	with	specific	mutations	was	a	major	success	in	clinical	practice.	Therefore,
it	is	useful	to	understand	whether	any	significant	mutations	have	been	found	in	certain	genes	for	each	melanoma	type.	Thus,	this	variable	indicates
whether	any	of	the	most	frequent	types	of	mutations	were	found	among	the	patients	analyzed;	it	has	4	possible	values:

"BRAF_Hotspot_Mutants":	BRAF	gene	hot-spot	mutations	are	present;	these	types	of	mutations	are	found	in	52%	of	the	instances	and	are	the
most	frequent	in	the	dataset.
"RAS_Hotspot_Mutants":	indicates	the	presence	of	RAS	gene	hot-spot	mutations;	these	are	the	second	most	frequently	encountered	mutation
types.
"NF1_Any_Mutants":	the	third	mutation	type	most	often	observed,	and	present	in	14%	of	cases,	is	in	the	NF1	gene.
"Triple_WT":	this	subtype	is	defined	as	a	heterogeneous	group	that	includes	instances	in	which	no	BRAF,	RAS,	or	NF1	mutations	are	present.

UV-signature:	ultraviolet	radiation	plays	an	important	mutagenic	role	in	melanoma.	This	variable	has	two	possible	values:	"UV	signature"	or	"not	UV
signature".	Instances	for	which	C>T	transitions	represent	more	than	60%	or	CC>TT	mutations	represent	more	than	5%	of	the	total	mutation	load	are
marked	with	the	"UV	signature"	value.	Instances	that	do	not	meet	this	criteria	are	assigned	the	"not	UV"	value.
RNASEQ-CLUSTER_CONSENHIER:	indicates	the	cluster	assigned	to	the	instance	in	the	clustering	process	we	saw	in	the	previous	capsule	and
whose	results	we	will	now	try	to	complement	by	using	ARs.	This	parameter	can	be	assigned	1	of	3	three	different	values,	each	representing	1	of	the
possible	clusters:	"immune",	"keratin",	or	"MITF-low".
MethTypes.201408:	this	variable	is	also	the	result	of	a	clustering	process,	in	this	case	applied	to	the	methylation	values	for	a	series	of	CpG	loci.	As	in
the	previous	case,	each	of	the	values	corresponds	to	a	cluster.	In	this	case	there	are	4	clusters:	"CpG	island-methylated",	"hyper-methylated",
"normal-like",	and	"hypo-methylated".	The	instances	of	"CpG	island-methylated"	cluster	have	high	methylation	levels	for	more	CpG	loci,	and	those	of
the	"hypo-methylated"	cluster	have	the	lowest	methylation	values.
MIRCluster:	is	another	variable	resulting	from	a	clustering	process.	This	time	applied	to	microRNA	sequencing	data.	In	this	case	there	are	4	possible
clusters:	"MIR.type.1",	"MIR.type.2",	"MIR.type.3",	or	"MIR.type.4".
LYMPHOCYTE.SCORE:	this	metric	is	calculated	as	a	function	of	lymphocyte	distribution	and	density.	Both	these	factors	are	evaluated	by	experts	and
scored	on	a	scale	[0,3],	with	0	indicating	the	absence	of	lymphocytes	in	both	cases	and	3	indicating	the	presence	of	lymphocytes	in	most	of	the	tissue
(distribution),	or	a	high	concentration	(in	the	case	of	density).	This	variable	is	calculated	as	the	sum	of	both	scores	and	therefore,	takes	integer	values
in	the	range	[0,6].

This	is	the	analysis	approach	we	will	take	in	this	capsule.	However,	ARs	could	be	useful	in	other	approaches	within	the	context	of	the	melanoma	cancer
data	set	we	will	be	working	with	throughout	the	course.	The	group	of	variables	we	will	work	with,	as	well	as	the	technique	we	will	choose,	will	depend	on
our	objectives	and	the	characteristics	of	the	variables	in	question.

Here	we	will	focus	on	the	6	variables	referred	to	above	and	will	implement	the	steps	required	to	identify	the	frequent	itemsets,	extract	the	ARs,	and
analyze	them.	As	part	of	this	latter	step,	we	will	perform	a	cluster	analysis	of	the	rules,	focusing	on	certain	variables	that	are	of	interest	to	us.	For	instance,
we	will	study	rules	in	which	certain	mutation	subtypes	appear	to	see	what	conclusions	we	can	draw	about	how	they	relate	to	the	other	variables.

2.	READING	AND	PROCESSING	THE	DATA

2.1	Reading	the	dataset

The	first	step	is	to	read	our	dataset	so	that	we	can	work	with	it	in	Python.	To	read	the	file	we	are	going	to	use	the	Pandas	library.

In	[]:

#	Importing	pandas	library	with	alias	'pd'
import	pandas	as	pd

#	Saving	link	to	our	data	in	variable	'url_datos'
url_datos	=	'https://drive.google.com/uc?id=1VF3MqQ3J7GBc527ClL2IgJ23XTc5-hX7'

#	Using	read_csv	method	to	read	a	file	in	CSV	format
conjunto_datos	=	pd.read_csv(url_datos,	delimiter=',',	na_values='-')

#	Printing	the	columns	(variables)	in	the	data	we	just	read
print('Variables	read:')
print(',	'.join(conjunto_datos.columns))

The	dataset	read	is	part	of	one	of	the	data	files	published	by	the	authors	of	the	original	study,	although	it	includes	many	more	variables	than	the	6	we	will
use	in	this	notebook.

2.2	Transformation	into	a	transaction	set

This	dataset	contains	a	fixed	number	of	6	variables	and	each	instance	(corresponding	to	a	tissue	sample	from	a	given	patient)	contains	a	value	for	each	of
those	variables.	To	verify	this,	we	can	look	at	the	first	few	instances	of	our	dataset:

In	[]:

#	So	all	the	variables	are	displayed	in	screen...
pd.set_option('display.max_columns',	6)
print('First	5	instances	of	the	dataset:')
#	Printing	the	first	5	instances	of	the	dataset
print(conjunto_datos.head())
#	Resetting	default	value
pd.reset_option('display.max_columns')

ARs	were	originally	applied	to	categorical	variables	(e.g.,	whether	a	certain	product	was	purchased	at	a	supermarket	or	not).	However,	numerical	variables
can	also	be	incorporated	into	our	AR	analyses,	for	instance	by	dividing	the	values	of	the	variable	into	intervals,	assigning	them	a	name	(e.g.,	"high",
"medium",	or	"low"),	and	treating	them	as	categories.	In	fact,	if	the	numerical	variable	can	only	be	assigned	a	few	values,	such	as	in	the	case	of	the
"LYMPHOCYTE.SCORE"	variable.

In	[]:

print('Distinct	values	for	each	of	the	variables:\n')
for	col	in	conjunto_datos.columns:
		print('*%s->	%s'	%	(col,	',	'.join(conjunto_datos.loc[conjunto_datos[col].notnull(),	col].sort_values().unique(
).astype(str))))

“LYMPHOCYTE.SCORE”	variable	only	has	6	possible	values,	so	we	can	directly	treat	each	one	as	a	category	as	we	do	with	the	values	of	the	other
variables.

Variables	read:
MUTATIONSUBTYPES,	UV-signature,	RNASEQ-CLUSTER_CONSENHIER,	MethTypes.201408,	MIRCluster,	LYMPHOCYTE.
SCORE

First	5	instances	of	the	dataset:
							MUTATIONSUBTYPES		UV-signature	RNASEQ-CLUSTER_CONSENHIER		\
0		BRAF_Hotspot_Mutants		UV	signature																			keratin			
1			RAS_Hotspot_Mutants		UV	signature																			keratin			
2		BRAF_Hotspot_Mutants		UV	signature																			keratin			
3			RAS_Hotspot_Mutants		UV	signature																			keratin			
4													Triple_WT								not	UV																				immune			

								MethTypes.201408		MIRCluster		LYMPHOCYTE.SCORE		
0												normal-like		MIR.type.3															2.0		
1		CpG	island-methylated		MIR.type.2															4.0		
2												normal-like		MIR.type.1															5.0		
3								hypo-methylated		MIR.type.2															2.0		
4		CpG	island-methylated		MIR.type.2															6.0		

Distinct	values	for	each	of	the	variables:

*MUTATIONSUBTYPES->	BRAF_Hotspot_Mutants,	NF1_Any_Mutants,	RAS_Hotspot_Mutants,	Triple_WT
*UV-signature->	UV	signature,	not	UV
*RNASEQ-CLUSTER_CONSENHIER->	MITF-low,	immune,	keratin
*MethTypes.201408->	CpG	island-methylated,	hyper-methylated,	hypo-methylated,	normal-like
*MIRCluster->	MIR.type.1,	MIR.type.2,	MIR.type.3,	MIR.type.4
*LYMPHOCYTE.SCORE->	0.0,	2.0,	3.0,	4.0,	5.0,	6.0

As	we	saw	earlier	in	the	course,	it	is	common	to	work	with	items	and	transactions	in	the	field	of	ARs.	To	work	with	our	dataset	in	terms	of	items	and
transactions	we	must	make	a	small	adjustment	to	its	format.	In	this	case,	items	will	become	pairs	(variable,	value)	and	each	instance	will	become	a
transaction	containing	a	list	of	pairs	(variable,	value).

When	working	in	Python,	this	transaction	set	will	be	represented	as	a	table	with	a	column	for	each	possible	item	and	with	each	row	taking	the	value	1	for
items	(columns)	contained	in	the	transaction	and	0	for	those	that	were	not.

In	[]:

#	Using	get_dummies	methods	to	generate	a	transaction	set
transacciones	=	pd.get_dummies(conjunto_datos,	columns=conjunto_datos.columns,	prefix_sep='=')	#	Ignora	los	valor
es	perdidos	a	no	ser	que	se	le	indique	dummy_na=True

#	In	the	transaction	set	generated	by	get_dummies	each	pair
#	(variable,	value)	is	represented	with	the	format	variable=value
transacciones.head()

Now	we	have	our	dataset	in	a	format	in	which	we	can	work	on	items	and	transactions,	we	will	use	it	as	input	information	for	the	algorithms	responsible	for
discovering	frequent	itemsets.

The	items	are	represented	in	the	variable=value	format	so	that	the	itemsets	and	rules	we	generate	in	the	following	steps	will	be	more	easily	readable.

3.	OBTAINING	FREQUENT	ITEMSETS

3.1	Explore	items

The	next	step	towards	the	extraction	of	ARs	is	the	identification	of	frequent	itemsets.	We	must	specify	the	minimum	support	required	to	decide	whether	an
itemset	is	considered	frequent.	As	an	initial	estimation,	we	can	say	that	we	will	normally	choose	support	in	the	range	(0,	0.2],	but	this	value	can	vary	a	lot
depending	on	the	data	we	are	working	with.	Knowing	the	frequency	with	which	each	of	the	items	appears	in	the	dataset	can	help	us	a	little	in	selecting	the
support.	Even	so,	it	is	likely	that	we	will	have	to	test	some	different	values	before	deciding	upon	an	appropriate	option

If	you	need	to	review	concepts	such	as	frequent	itemsets	or	support,	remember	that	you	can	refer	both	to	Capsule	1	of	this	current	module	and	Capsule	3
of	Module	3	(Unsupervised	learning)	at	any	time.

Out[]:

MUTATIONSUBTYPES=BRAF_Hotspot_Mutants MUTATIONSUBTYPES=NF1_Any_Mutants MUTATIONSUBTYPES=RAS_Hotspot_Mutants MUTATIONSUBTYPES=Triple_WT

0 1 0 0

1 0 0 1

2 1 0 0

3 0 0 1

4 0 0 0

5	rows	×	23	columns

In	[]:

#	Importing	matplotlib.pyplot	library	with	alias	plt
import	matplotlib.pyplot	as	plt

fig	=	plt.figure(figsize=(10,5))
#	Computing	the	frequency	of	each	item
item_freqs	=	transacciones.sum()/len(transacciones)
#	Representing	such	frequencies	in	a	plot
item_freqs.plot(kind='bar',	title='Item	frequency')
plt.ylabel('Frequency')
plt.grid(axis='y',	ls=':',	color='grey')
plt.show()

Here	we	should	note	the	presence	of	a	substantial	number	of	items	whose	frequency	is	less	than	0.2.	The	less	frequent	items	have	a	support	level	below
0.1.	It	is	important	to	understand	the	significance	of	support	and	to	consider	the	frequencies	of	items	in	our	dataset	when	deciding	on	a	minimum	support
threshold.	In	this	case,	if	we	were	to	set	a	support	threshold	of	0.2,	we	know	that	all	the	items	that	appear	in	fewer	than	20%	of	the	transactions	will	be
automatically	discarded	as	frequent	itemsets.	Therefore,	any	superset	that	could	include	them	must	also	be	discarded	as	a	frequent	itemset	and	no	rules
including	such	an	item	can	be	generated.

For	instance,	if	the	item	LYMPHOCYTE.SCORE=5.0	with	a	support	of	0.1561	is	not	a	frequent	itemset,	then	nor	can	LYMPHOCYTE.SCORE=5.0,
RNASEQ-CLUSTER_CONSENHIER=immune)	or	any	other	itemset	that	includes	the	item	LYMPHOCYTE.SCORE=5.0.	This	is	because	these	other
itemsets	can	appear	in	the	dataset	at	most	as	many	times	as	LYMPHOCYTE.SCORE=5.0	appears.

In	[]:

print('Frequency	of	each	item:')
print(transacciones.sum()/len(transacciones))

In	this	capsule	we	will	work	with	a	minimum	support	of	0.015.	This	support	is	a	low	enough	for	all	the	basic	itemsets	(1−itemsets)	to	be	considered
frequent	and,	therefore,	for	them	to	potentially	become	part	of	an	AR.	It	is	also	low	enough	to	allow	some	diversity	in	longer	itemsets.	This	minimum
support	simultaneously	allows	sets	of	itemsets	representing	excessively	specific	cases—for	example,	those	that	occur	for	a	single	transaction	(a	single
patient)—to	be	excluded	from	consideration	as	frequent	itemsets.

We	encourage	you	to	experiment	with	different	support	thresholds	and	see	how	the	number,	length,	and	content	of	frequent	itemsets	and	the	ARs
extracted	from	them	change.

3.2	The	FP-Growth	algorithm	for	frequent	itemset	detection

FP-Growth	is	an	algorithm	used	to	identify	frequent	itemsets	in	a	dataset	given	a	minimum	level	of	support.	The	main	advantage	of	FP-Growth	is	its
efficiency.	It	uses	a	tree	structure	to	represent	the	dataset	in	a	compressed	form	and	this	allows	it	to	be	more	efficient	at	finding	frequent	itemsets
compared	to	other	techniques.	We	will	use	the	MLXTEND	(http://rasbt.github.io/mlxtend/)	library	to	apply	FP-Growth.	MLXTEND	is	a	Python	library	that
includes	several	data	science	and	machine	learning	tools	and	methods	in	addition	to	AR	extraction	tools.	However,	in	this	capsule	we	will	exclusively	focus
on	the	functionality	of	MLXTEND	for	frequent	itemsets	and	ARs	(http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.frequent_patterns/).

Among	other	options,	MLXTEND	includes	an	implementation	of	the	FP-Growth	algorithm
(http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/fpgrowth/).

In	[]:

#	Importing	FP-Growth	from	MLXTEND
from	mlxtend.frequent_patterns	import	fpgrowth

#	Applying	FP-growth	passing	minimum	support	threshold	as	parameter
#	'max_len'	parameter	sets	the	maximum	length	for	the	itemsets
itemsets_frecuentes	=	fpgrowth(transacciones.astype('bool'),	min_support=0.015,	use_colnames=True,	max_len=4)

print('%d	frequent	itemsets	identified.'	%	(len(itemsets_frecuentes)))

In	addition	to	selecting	the	minimum	support	threshold,	we	must	also	provide	a	maximum	length	of	4	items	for	the	itemsets.	Limiting	the	maximum	length
of	itemsets	allows	rules	to	be	less	complex,	making	their	analysis	somewhat	simpler.	We	can	look	at	the	contents	of	itemsets_frecuentes	to	check	the
output	format	returned	by	FP-Growth.

Frequency	of	each	item:
MUTATIONSUBTYPES=BRAF_Hotspot_Mutants					0.450450
MUTATIONSUBTYPES=NF1_Any_Mutants										0.084084
MUTATIONSUBTYPES=RAS_Hotspot_Mutants						0.276276
MUTATIONSUBTYPES=Triple_WT																0.138138
UV-signature=UV	signature																	0.795796
UV-signature=not	UV																							0.165165
RNASEQ-CLUSTER_CONSENHIER=MITF-low								0.177177
RNASEQ-CLUSTER_CONSENHIER=immune										0.504505
RNASEQ-CLUSTER_CONSENHIER=keratin									0.306306
MethTypes.201408=CpG	island-methylated				0.255255
MethTypes.201408=hyper-methylated									0.279279
MethTypes.201408=hypo-methylated										0.252252
MethTypes.201408=normal-like														0.213213
MIRCluster=MIR.type.1																					0.246246
MIRCluster=MIR.type.2																					0.255255
MIRCluster=MIR.type.3																					0.243243
MIRCluster=MIR.type.4																					0.216216
LYMPHOCYTE.SCORE=0.0																						0.273273
LYMPHOCYTE.SCORE=2.0																						0.231231
LYMPHOCYTE.SCORE=3.0																						0.096096
LYMPHOCYTE.SCORE=4.0																						0.111111
LYMPHOCYTE.SCORE=5.0																						0.156156
LYMPHOCYTE.SCORE=6.0																						0.126126
dtype:	float64

965	frequent	itemsets	identified.

http://rasbt.github.io/mlxtend/
http://rasbt.github.io/mlxtend/api_subpackages/mlxtend.frequent_patterns/
http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/fpgrowth/

In	[]:

import	warnings
warnings.filterwarnings("ignore",	category=DeprecationWarning)

#	Showing	the	first	5	rows	of	freq_itemsets
print(itemsets_frecuentes.head())

As	we	can	see,	itemsets_frecuentes	has	two	columns:	the	first	one	contains	the	support	of	a	frequent	itemset	and	the	second	one	presents	the	frequent
itemset	itself.	Looking	only	at	these	first	5	rows	of	frequent	itemsets_frecuentes	we	might	think	that	all	the	ones	found	had	a	length	of	1	(i.e.,	they	comprise
only	1	item).	However,	if	we	consult	the	last	5	rows,	things	change.

In	[]:

#	Showing	the	last	5	rows	of	freq_itemsets
print(itemsets_frecuentes.tail())

The	frequent	itemsets	are	ordered	so	that	those	formed	by	1	item	(those	with	higher	supports)	appear	in	the	first	rows,	while	more	complex	itemsets
appear	in	the	last	rows.	As	we	add	items	to	the	itemsets,	the	support	is	reduced	because	we	are	adding	more	elements	that	must	be	in	the	transaction	at
the	same	time.

To	get	a	better	general	idea	of	the	lengths	of	the	frequent	itemsets	identified	by	FP-Growth	we	can	look	up	the	length	of	each	of	the	frequent	itemsets,
count	how	many	itemsets	there	are	with	each	length,	and	represent	this	graphically.

In	[]:

#	Counting	how	many	frequent	itemsets	of	each	length	have	been	found
itemsets_frecuentes_por_longitud	=	itemsets_frecuentes['itemsets'].apply(len).value_counts().sort_index()

#	Creating	a	barchart	to	represent	the	number	of	itemsets	by	their	length
fig	=	plt.figure()
ax	=	fig.add_subplot(111)
itemsets_frecuentes_por_longitud.plot(kind='bar',	ax=ax,	rot=0)
ax.set_xlabel('Itemset	length')
ax.set_ylabel('Number	of	itemsets')
plt.show()

4.	EXTRACTION	AND	ANALYSIS	OF	ASSOCIATION	RULES

				support																																	itemsets
0		0.795796														(UV-signature=UV	signature)
1		0.450450		(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants)
2		0.306306						(RNASEQ-CLUSTER_CONSENHIER=keratin)
3		0.243243																		(MIRCluster=MIR.type.3)
4		0.231231																			(LYMPHOCYTE.SCORE=2.0)

						support																																											itemsets
960		0.021021		(MIRCluster=MIR.type.2,	UV-signature=UV	signat...
961		0.021021		(MIRCluster=MIR.type.2,	UV-signature=UV	signat...
962		0.018018		(MethTypes.201408=hypo-methylated,	MUTATIONSUB...
963		0.015015		(MethTypes.201408=hypo-methylated,	UV-signatur...
964		0.015015		(MethTypes.201408=hypo-methylated,	UV-signatur...

4.1	From	frequent	itemsets	to	association	rules

Once	we	have	used	the	FP-Growth	algorithm	to	identify	the	frequent	itemsets,	we	can	now	generate	ARs	from	them	with	a	certain	minimum	confidence.
To	do	so,	we	will	continue	working	with	the	MLXTEND	library,	which	also	has	functionality	to	generate	association	rules
(http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/)	from	a	list	of	frequent	itemsets.	We	will	set	the	minimum	confidence
threshold	to	0.85.	Like	the	support	threshold,	this	will	depend	on	the	problem	on	which	we	are	working.	Different	thresholds	are	usually	tested	before
choosing	the	one	that	seems	most	appropriate.

However,	confidence	thresholds	that	are	too	low	are	not	normally	useful	because	the	implication	A→C	that	represents	the	rule	is	fulfilled	on	most
occasions	in	which	A	appears.	In	general,	it	is	desirable	to	choose	confidence	thresholds	equal	to	or	greater	than	0.75	to	ensure	that	the	rule	is	violated	in
no	more	than	25%	of	the	cases,	which	is	a	considerably	high	margin	of	error.

In	[]:

#	Importing	association_rules	method	from	MLXTEND	library
from	mlxtend.frequent_patterns	import	association_rules

#	Establishing	minimum	confidence	threshold	at	0.85
reglas_asociacion	=	association_rules(itemsets_frecuentes,	metric="confidence",	min_threshold=0.85)

print('%d	rules	generated.'	%	(len(reglas_asociacion)))

As	we	did	with	the	FP-Growth	result	we	can	now	look	at	reglas_asociacion.

In	[]:

#	So	all	the	variables	can	be	displayed...
pd.set_option('display.max_columns',	6)
print('First	5	rules:')
print(reglas_asociacion.head())
pd.reset_option('display.max_columns')

reglas_asociacion	has	9	columns	and	contains	a	total	of	317	rules.	Two	of	the	columns,	antecedents	and	consequents,	are	dedicated	to	storing	the	two
itemsets	that	form	the	antecedent	and	consequent	of	the	rule,	respectively.	The	other	7	columns	contain	values	for	different	quality	metrics	of	the	rule.

4.2	Initial	assessment	of	the	extracted	rules

The	number	of	rules	found	(317)	can	be	a	bit	overwhelming	at	first.	So,	where	do	we	start?	How	do	we	know	which	rules	might	be	most	interesting?	Which
quality	metric	should	we	look	at?	Let’s	go	step	by	step.

We	can	start	by	querying	how	many	items	form	the	antecedents	and	consequents	of	the	ARs	obtained.	Because	we	limited	the	length	of	frequent	itemsets
to	a	maximum	of	4	items,	the	antecedent	of	the	rules	will	have	at	most	3	items	given	that	at	least	one	of	them	must	be	the	consequent.

317	rules	generated.

First	5	rules:
																																									antecedents		\
0												(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants)			
1		(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants,	RNASEQ...			
2		(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants,	RNASEQ...			
3		(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants,	MIRClu...			
4		(RNASEQ-CLUSTER_CONSENHIER=keratin,	MUTATIONSU...			

																			consequents		antecedent	support		...		leverage		conviction		\
0		(UV-signature=UV	signature)												0.450450		...		0.049942				2.187902			
1		(UV-signature=UV	signature)												0.231231		...		0.029200				2.620621			
2		(UV-signature=UV	signature)												0.102102		...		0.008838				1.735736			
3		(UV-signature=UV	signature)												0.084084		...		0.005158				1.429429			
4		(UV-signature=UV	signature)												0.033033		...		0.003742				2.246246			

			zhangs_metric		
0							0.222517		
1							0.178147		
2							0.109253		
3							0.078142		
4							0.128882		

[5	rows	x	10	columns]

http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/

In	[]:

print('Number	of	rules	by	antecedent	length:')
print(reglas_asociacion['antecedents'].apply(len).value_counts().sort_index())

print('Number	of	rules	by	consequent	length:')
print(reglas_asociacion['consequents'].apply(len).value_counts().sort_index())

As	we	can	see,	indeed,	the	maximum	length	of	the	antecedents	is	3	items	and	only	6	rules	have	a	single	item	as	the	antecedent.	Regarding	the
consequent,	some	rules	have	more	than	one	item	in	the	consequent,	but	these	are	a	clear	minority.	Next,	we	will	see	the	consequents	of	the	rules	and	in
how	many	ARs	they	each	appear:

In	[]:

print('Number	of	rules	with	each	consequent:')
print(reglas_asociacion['consequents'].value_counts())

The	remarkably	high	number	of	rules	in	which	the	consequent	is	the	itemset	(UV-signature=UV	signature)	is	particularly	striking.	If	we	return	to	the	bar
chart	representing	the	frequency	of	each	of	the	itemsets	that	we	generated	at	the	beginning	of	section	3	in	this	notebook,	we	can	see	that	the	itemset	UV-
signature=UV	signature	is	present	in	practically	80%	of	the	transactions.

Frequency	of	each	one	of	the	items	in	the	dataset

Number	of	rules	by	antecedent	length:
1						6
2				103
3				208
Name:	antecedents,	dtype:	int64
Number	of	rules	by	consequent	length:
1				314
2						3
Name:	consequents,	dtype:	int64

Number	of	rules	with	each	consequent:
(UV-signature=UV	signature)																																						232
(RNASEQ-CLUSTER_CONSENHIER=immune)																																46
(RNASEQ-CLUSTER_CONSENHIER=keratin)																															14
(LYMPHOCYTE.SCORE=0.0)																																													5
(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants)																												5
(UV-signature=not	UV)																																														4
(MUTATIONSUBTYPES=Triple_WT)																																							4
(UV-signature=UV	signature,	RNASEQ-CLUSTER_CONSENHIER=immune)						3
(MUTATIONSUBTYPES=RAS_Hotspot_Mutants)																													2
(MIRCluster=MIR.type.2)																																												1
(MIRCluster=MIR.type.4)																																												1
Name:	consequents,	dtype:	int64

The	confidence	of	a	rule	is	a	good	starting	point	but	also	has	its	limitations.	The	algorithm	generates	rules	with	a	confidence	higher	than	the	indicated
threshold	(0.85	in	our	case).	Therefore,	some	irrelevant	rules	with	a	confidence	exceeding	the	threshold	were	generated	because	they	had	an	item	with	a
high	level	of	support	in	the	consequent.	Remember	that	in	Capsule	1	of	this	module	we	saw	that	the	confidence	metric	presented	this	problem	by	not
considering	the	support	of	the	consequent	in	the	calculation.

To	avoid	these	rules,	we	recommend	considering	other	metrics	such	as	lift	or	leverage	to	complement	the	use	of	confidence	to	evaluate	the	quality	of	ARs:

Lift:	evaluates	whether	the	consequent	is	more	common	in	those	transactions	where	the	antecedent	appears	than	in	the	dataset	in	general.
Leverage:	checks	if	the	support	of	the	rule	is	greater	or	smaller	than	it	would	be	if	the	antecedent	and	consequent	were	independent.

Both	metrics	consider	the	support	of	the	consequent	and	help	to	check	if	a	rule	has	a	high	level	of	confidence	because	A→C	is	indeed	true,	or	if	the
confidence	is	high	simply	because	the	consequent	is	very	frequent.	To	be	of	good	quality,	rules	must	have	a	lift	value	exceeding	1	and	a	leverage	greater
than	0.	Thus,	we	filter	our	rules	to	ensure	that	that	we	retain	only	those	that	meet	these	2	conditions:

In	[]:

reglas_asociacion	=	reglas_asociacion.loc[(reglas_asociacion['lift']	>	1)	&	(reglas_asociacion['leverage']	>	0)]

print('%d	reglas	tienen	lift	>	1	y	leverage	>	0.'	%	(len(reglas_asociacion)))

In	any	case,	there	is	no	perfect	quality	metric;	they	all	have	their	advantages	and	disadvantages	and	so	we	must	simultaneously	consider	several	of	them.
Graphs	such	as	scatter	plots	allow	us	to	see	how	the	rules	generated	are	distributed	according	to	two	metrics	(X-axis	and	Y-axis).	They	can	be	useful	to
identify	potentially	interesting	groups	of	rules	or	groups	that	may	not	be	very	relevant.

In	[]:

#	Scatter	plot:	rule	support	(X-axis)	vs	rule	confidence	(Y-axis)
reglas_asociacion.plot.scatter('support',	'confidence')
plt.show()

Indeed,	what	we	find	interesting	or	not	may	vary	depending	on	our	objective.	Hence,	if	we	were	interested	in	discovering	subgroups	of	very	minority
patients	in	which	certain	conditions	are	always	met,	we	might	pay	special	attention	to	the	group	of	rules	in	the	upper	left	corner	of	the	graph	with	a
confidence	1	but	with	low	or	very	low	supports.

The	rules	with	the	highest	levels	of	support	are	likely	to	consist	of	itemsets	that	are	quite	frequent	in	the	dataset	and	probably	establish	very	general
relationships	that	may	not	add	much	value.	There	are	likely	to	be	interesting	rules	among	the	bulk	of	rules	with	medium	or	low	supports.	This	is	because
these	represent	associations	that	are	difficult	to	detect	with	the	naked	eye	but	that	occur	in	a	sufficiently	representative	number	of	patients	to	be	interesting
for	analysis.

Several	types	of	visualizations	can	be	used	to	study	the	rules	and	can	help	us	to	summarize	the	information	by	providing	us	with	an	immediate	initial	idea
of	what	the	rules	are	telling	us.	An	example	would	be	the	“parallel	categories“	type	graph	that	we	are	going	to	generate	below.

317	reglas	tienen	lift	>	1	y	leverage	>	0.

In	[]:

#	To	be	able	to	generate	the	graph,	we	convert	the	elements	in
#	'antecedents'	y	'consequents'	columns	from	frozensets	to	lists
reglas_asociacion['antecedents']	=	reglas_asociacion['antecedents'].apply(lambda	x:	list(x))
reglas_asociacion['consequents']	=	reglas_asociacion['consequents'].apply(lambda	x:	list(x))

print()

In	[]:

#	Generating	a	parallel	categories	graph

#	Importing	the	required	libraries
import	plotly.graph_objects	as	go
import	plotly.express	as	px
import	numpy	as	np

#	Defining	the	color	palette
colores_px	=	px.colors.qualitative.Pastel1+px.colors.qualitative.Pastel
#	Listing	all	the	items	in	the	transaction	set
lista_items	=	np.array(transacciones.columns)

lista_auxiliar	=	[]
colores	=	[]
for	indice,regla	in	reglas_asociacion.iterrows():
		for	ant_item	in	regla['antecedents']:
				consecuente	=	regla['consequents'][0]
				lista_auxiliar.append([ant_item,	consecuente])
				colores.append(colores_px[np.where(lista_items	==	consecuente)[0][0]])

df_auxiliar	=	pd.DataFrame(lista_auxiliar,	columns=['Antecedente',	'Consecuente'])

#	Creating	antecedents	dimension
antecedent_dim	=	go.parcats.Dimension(
				values=df_auxiliar.Antecedente,
				label="Antecedente"
)

#	And	consequent	dimension
consequent_dim	=	go.parcats.Dimension(
				values=df_auxiliar.Consecuente,
				label="Consecuente"
)

#	Creating	figure
fig	=	go.Figure(data	=	[go.Parcats(dimensions=[antecedent_dim,	consequent_dim],
								hoveron='category',	hoverinfo='count',
								line={'color':colores},
								labelfont={'size':	14,	'family':	'Arial'},
								arrangement='freeform')])

#	Setting	fontsize,	style	and	margins
fig.update_layout(
				font=dict(
								family="Arial,	monospace",
								size=12,
								color="#7f7f7f"
),
				margin=dict(l=200,	r=200,	t=20,	b=20)
)

#	Showing	the	figure
fig.show()

In	this	graph	the	items	on	the	left	appear	in	the	antecedent	of	a	rule	and	on	the	right	are	items	that	appear	in	a	consequent:

The	greater	the	number	of	rules	in	which	the	item	appears	as	an	antecedent	or	consequent	(as	appropriate),	the	larger	the	sector	of	the	left	or	right
bar	associated	with	that	item.
If	an	item,	A,	ever	appears	as	part	of	the	antecedent	of	a	rule	in	whose	consequent	item,	B,	appears,	a	line	is	drawn	from	A	on	the	left	to	B	on	the	right
of	the	graph.	The	thickness	of	this	line	indicates	the	number	of	rules	in	which	the	item	on	the	left	appears	simultaneously	as	part	of	the	antecedent
and	the	one	on	the	right	as	part	of	the	consequent.

Graphs	like	this	one	allow	us	to	summarize	a	lot	of	information	and	to	easily	see,	for	example,	the	predominance	of	the	"UV-signature=UV	signature"	item
in	the	rule	consequents.	As	we	have	already	seen,	this	item	has	very	high	level	of	support	and,	therefore,	rules	with	a	high	level	of	confidence	can	be
obtained	with	almost	any	antecedent.

Thus,	focusing	on	other	groups	of	rules	with	high	confidence	values	but	more	specific	consequents	(with	conditions	only	fulfilled	in	certain	patients),	can	be
much	more	scientifically	interesting.	Hence,	as	an	example	of	one	of	the	many	different	analyses	that	could	be	carried	out,	in	the	following	we	will	focus	on
ARs	that	try	to	explain	what	patients	with	a	particular	type	of	mutation	have	in	common.

4.3	Analysis	by	groups

We	mentioned	at	the	beginning	of	this	capsule	that	the	detection	of	distinct	types	of	mutations	has	allowed	the	development	of	targeted	therapies.	One
type	of	approach	commonly	used	in	AR	analysis	is	"group	analysis".	This	divides	the	rules	into	separate	groups	depending,	for	example,	on	whether	they
contain	certain	variables.	Thus,	we	could	retain	rules	in	which	the	variable	MUTATIONSUBTYPES	appears	in	the	consequent	and	distinguish	between
those	whose	consequent	refers	to	"BRAF_Hotspot_Mutants"	or	"RAS_Hotspot_Mutants"	mutations.

Again,	we	can	rely	on	visualization	tools	that	allow	us	to	summarize	the	knowledge	contained	in	the	rules	and	represent	it	graphically.	In	this	case	we	will
use	a	chord	diagram,	also	known	as	a	dependency	wheel.	To	generate	this	type	of	diagram,	we	will	use	the	R	library	chorddiag	command.	Because	we
need	a	R	library	rather	than	a	Python	library	we	must	follow	the	procedure	described	in	previous	capsules	to	use	the	rpy2	library	we	installed	at	the
beginning	of	the	notebook.

To	generate	a	chord	diagram	we	must	first	create	an	adjacency	matrix.	This	is	a	square	matrix	with	as	many	rows	and	columns	as	there	are	items.	For
each	pair	of	items,	we	indicate	the	number	of	rules	in	which	the	first	item	is	in	the	antecedent	and	the	second,	the	number	of	times	it	appears	in	the
consequent.	In	the	following	cell	you	can	find	the	code	to	generate	the	adjacency	matrix	corresponding	to	the	rules	in	whose	consequent	the	BRAF	or	RAS
mutation	subtypes	appear.

In	[]:

#	Importing	numpy	library	with	alias	np
import	numpy	as	np

#	Listing	items	included	in	interesting	rules
lista_items	=	[]

#	We	add	to	lista_items	the	items	in	the	antecedents	and	consequents	of	rules	with
#	'MUTATIONSUBTYPES=RAS_Hotspot_Mutants'	or	'MUTATIONSUBTYPES=BRAF_Hotspot_Mutants'	in	their	consequents
for	indice,	regla	in	reglas_asociacion.iterrows():
		if	('MUTATIONSUBTYPES=RAS_Hotspot_Mutants'	in	regla['consequents']	or	'MUTATIONSUBTYPES=BRAF_Hotspot_Mutants'	i
n	regla['consequents'])	and	len(regla['consequents'])	==	1:
				for	con	in	regla['consequents']:	#	For	each	item	in	the	consequent
						if	con	not	in	lista_items:	#	If	it	had	not	been	already	added
								lista_items.append(con)	#	It	is	added	to	lista_items

				for	ant	in	regla['antecedents']:	#	For	each	item	in	the	antecedent
						if	ant	not	in	lista_items:	#	If	it	had	not	been	already	added
								lista_items.append(ant)	#	It	is	added	to	lista_items

lista_items	=	np.array(lista_items)

#	Creating	and	initializing	adjacency	matrix
matriz_adyacencia_porgrupos	=	np.zeros((len(lista_items),	len(lista_items)),	dtype=int)

#	For	each	of	the	rules
for	indice,	regla	in	reglas_asociacion.iterrows():
		#	If	consequent	is	one	of	the	interesting	items
		if	('MUTATIONSUBTYPES=RAS_Hotspot_Mutants'	in	regla['consequents']	or	'MUTATIONSUBTYPES=BRAF_Hotspot_Mutants'	i
n	regla['consequents'])	and	len(regla['consequents'])	==	1:
				#	For	each	item	in	the	consequent	(in	our	case	just	one)
				for	con	in	regla['consequents']:
						#	Look	for	its	index	in	lista_items
						pos_consecuente	=	np.where(lista_items==con)[0][0]
						#	For	each	item	in	the	antecedent
						for	ant	in	regla['antecedents']:
								#	Localizamos	su	posición	en	lista_items
								pos_antecedente	=	np.where(lista_items==ant)[0][0]
								#	Adding	one	to	the	corresponding	position	in	the	adjacency	matrix
								matriz_adyacencia_porgrupos[pos_consecuente,	pos_antecedente]	+=	1

Once	we	have	generated	the	adjacency	matrix,	we	can	use	R	to	create	our	chord	diagram	from	that	matrix.

Remember	that	cells	beginning	with	%%R	contain	R	code.

In	[]:

%%R	-i	matriz_adyacencia_porgrupos	-i	lista_items

library(chorddiag)

dimnames(matriz_adyacencia_porgrupos)	<-	list(consecuente	=	lista_items,	antecedente	=	lista_items)

#	Building	the	chord	diagram:
p	<-	chorddiag(matriz_adyacencia_porgrupos,	margin	=	250,	width=1000,	height=1000,	palette='Spectral',	
groupnamePadding	=	20,	groupnameFontsize	=	10,	showTicks=FALSE)

#	Saving	the	widget
library(htmlwidgets)
saveWidget(p,	file="chordDiagram_porgrupos.html")

In	this	case,	this	R	code	allows	us	to	create	a	chord	diagram	stored	in	the	file	"chordDiagram_bygroups.html".	We	can	download	the	file	onto	our	computer
by	executing	the	following	cell	and	once	downloaded,	we	can	open	it	in	our	browser	and	interact	with	it.

In	[]:

from	google.colab	import	files
files.download('chordDiagram_porgrupos.html')

If	you	open	the	downloaded	file	in	your	browser,	you	will	see	a	chart	like	the	one	shown	below.	However,	the	graph	seen	here	is	only	a	copy	of	the	one	we
generated	(and	downloaded)	when	running	the	notebook.	This	means	that	if	we	change	the	notebook	code,	the	downloadable	file	may	also	change	while
the	downloaded	version	shown	below	will	not.

The	circumference	of	the	wheel	is	divided	into	different	sectors	which	represent	the	appearances	of	each	item	in	the	consequents	of	the	ARs.	The	greater
the	length	of	the	sector	reserved	for	an	item,	the	greater	the	number	of	rules	in	whose	consequent	it	appears;	items	that	do	not	appear	in	any	consequent
are	represented	by	a	thin	line.

Each	of	these	sectors	is	divided	into	different	subsectors	that	link	to	the	items	in	the	antecedents.	That	is,	the
"MUTATIONSUBTYPES=RAS_Hotspot_Mutants"	sector	in	the	chord	diagram	contains	a	subsector	that	links	to	the	"LYMPHOCYTE.SCORE=0.0"	item
because	"LYMPHOCYTE.SCORE=0.0"	appears	in	the	antecedent	of	the	rules	with	"MUTATIONSUBTYPES=RAS_Hotspot_Mutants"	in	their	consequent.
The	thickness	of	the	subsector	is	proportional	to	the	number	of	rules	in	which	this	relationship	occurs.	In	this	case,	of	the	6	rules	with
"MUTATIONSUBTYPES=RAS_Hotspot_Mutants"	in	the	consequent,	2	included	"LYMPHOCYTE.SCORE=0.0"	in	their	antecedent.

In	[]:

from	IPython.display	import	HTML,	IFrame
IFrame(src='https://sl.ugr.es/0csy',width=1000,	height=500)

Once	we	know	how	to	interpret	it,	chord	diagrams	immediately	provide	quite	a	lot	of	information	about	our	rule	subgroups.	For	example,	by	hovering	our
mouse	over	the	two	mutation	types	we	can	easily	detect	that	only	two	items	appear	in	the	antecedents	of	both	the	"LYMPHOCYTE.SCORE=0.0"	and
"MIRCluster=MIR.type.4";	the	remaining	items	relate	only	to	BRAF-type	or	RAS-type	sub-mutations,	but	not	to	both.	We	can	also	easily	see	that	the	item
that	appears	most	often	as	an	antecedent	for	the	BRAF	mutation	type	is	"RNASEQ-CLUSTER_CONSENHIER=MITF-low",	pointing	to	an	important	link
between	belonging	to	the	MITF-low	cluster	and	having	BRAF-type	mutations.

In	addition,	since	only	a	few	ARs	are	included	in	each	cluster,	we	can	afford	to	look	at	them	in	detail	and	further	study	the	differences	between	the
relationship	of	both	types	of	mutations	and	the	remaining	variables.

Let’s	first	show	each	of	the	rules	with	the	consequent	"MUTATIONSUBTYPES=RAS_Hotspot_Mutants":

In	[]:

#	Making	some	adjustments	so	the	rules	are	shown	in	a	friendly	format
#	Sorting	alphabetically	items	in	both	antecedents	and	consequents
reglas_asociacion['antecedents'].apply(lambda	x:	x.sort(reverse=False))
reglas_asociacion['consequents'].apply(lambda	x:	x.sort(reverse=False))

print()

Out[]:

MU
TAT

ION
SU
BTY

PES
=R
AS_

Ho
tsp
ot_
Mu
tan
ts

RNASEQ-CLUSTER_CONSENHIER=MITF-low

M
ethTypes.201408=hypo-m

ethylated
M
IRCluster=M

IR.type.1
M
IRCluster=M

IR.type.4
M
ethTypes.201408=hyper-m

ethylated
LYM

PHOCYTE.SCORE=2.0

In	[]:

#	Index	of	rules	whose	consequents	includes	MUTATIONSUBTYPES=RAS_Hotspot_Mutants
indices_consecuente_RASmut	=	reglas_asociacion['consequents'].apply(lambda	x:	'MUTATIONSUBTYPES=RAS_Hotspot_Mutan
ts'	in	x	and	len(x)	==	1)
#	Selecting	only	rules	whose	consequents	include	MUTATIONSUBTYPES=RAS_Hotspot_Mutants
reglas_consecuente_RASmut	=	reglas_asociacion.loc[indices_consecuente_RASmut,	reglas_asociacion.columns].reset_in
dex()
print('Numer	of	rules	with	(MUTATIONSUBTYPES=RAS_Hotspot_Mutants)	as	consequent:	%d'	%	(len(reglas_consecuente_RA
Smut)))

#	Index	of	rules	whose	consequents	includes	MUTATIONSUBTYPES=BRAF_Hotspot_Mutants
indices_consecuente_BRAFmut	=	reglas_asociacion['consequents'].apply(lambda	x:	'MUTATIONSUBTYPES=BRAF_Hotspot_Mut
ants'	in	x	and	len(x)	==	1)
#	Selecting	only	rules	whose	consequents	include	MUTATIONSUBTYPES=BRAF_Hotspot_Mutants
reglas_consecuente_BRAFmut	=	reglas_asociacion.loc[indices_consecuente_BRAFmut,	reglas_asociacion.columns].reset_
index()
print('Number	of	rules	with	(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants)	as	consequent:	%d'	%	(len(reglas_consecuente_
BRAFmut)))

In	[]:

print('>>>	Rules	with	(MUTATIONSUBTYPES=RAS_Hotspot_Mutants)	as	consequent	<<<')
print()
for	indice,	regla	in	reglas_consecuente_RASmut.iterrows():
		print('RULE	%d'	%(indice+1))
		print(regla['antecedents'],	'	----->	',	regla['consequents'])
		print('Consequent	support:	%f'	%	regla['consequent	support'])
		print('Rule	support:	%f'	%	regla['support'])
		print('Confidence:	%f'	%	regla['confidence'])
		print('Lift:	%f	'	%	regla['lift'])
		print('Leverage:	%f'	%	regla['leverage'])
		print()

In	addition	to	the	consequent,	both	rules	share	2	of	the	3	items	that	form	the	antecedent	"LYMPHOCYTE.SCORE=0.0"	and	"MethTypes.201408=CpG
island-methylated".	The	difference	between	the	2	rules	is	in	the	use	of	the	"RNASEQ-CLUSTER_CONSENHIER"	or	"MIRCluster"	variable.	Because	they
both	have	the	same	consequent,	but	RULE	1	presents	higher	confidence,	lift,	and	leverage,	it	seems	that,	in	this	case,	the	clustering	performed	to	obtain
the	"RNASEQ-CLUSTER_COSENHIER"	variable	was	more	useful	for	finding	a	reliable	pattern	related	to	the	RAS	hot-spot	mutation.

RULE	1	has	relatively	low	levels	of	support,	meaning	that	it	characterizes	a	small	number	of	patients	(2.1%	of	the	dataset)	but	offers	a	confidence	of	1
which.	This	means	that	there	are	patients	in	the	dataset	for	whom	we	can	know	their	mutation	type	just	by	knowing	the	values	of	3	other	variables.	This
group	of	patients	also	accounts	for	about	8%	of	the	total	number	of	patients	with	a	RAS-type	mutation,	the	second	most	common	mutation	found	in	the
data.	Of	course,	to	extend	this	rule	beyond	our	dataset	we	must	perform	external	validation	on	different	sets	of	patients	to	confirm	that	this	association
holds	true	in	other	populations.

Next,	we	will	turn	to	the	rules	with	the	consequent	"MUTATIONSUBTYPES=BRAF_Hotspot_Mutants":

Numer	of	rules	with	(MUTATIONSUBTYPES=RAS_Hotspot_Mutants)	as	consequent:	2
Number	of	rules	with	(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants)	as	consequent:	5

>>>	Rules	with	(MUTATIONSUBTYPES=RAS_Hotspot_Mutants)	as	consequent	<<<

RULE	1
['LYMPHOCYTE.SCORE=0.0',	'MethTypes.201408=CpG	island-methylated',	'RNASEQ-CLUSTER_CONSENHIER=immune
']		----->		['MUTATIONSUBTYPES=RAS_Hotspot_Mutants']
Consequent	support:	0.276276
Rule	support:	0.021021
Confidence:	1.000000
Lift:	3.619565	
Leverage:	0.015213

RULE	2
['LYMPHOCYTE.SCORE=0.0',	'MIRCluster=MIR.type.4',	'MethTypes.201408=CpG	island-methylated']		----->		
['MUTATIONSUBTYPES=RAS_Hotspot_Mutants']
Consequent	support:	0.276276
Rule	support:	0.018018
Confidence:	0.857143
Lift:	3.102484	
Leverage:	0.012210

In	[]:

print('>>>	Rules	with	(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants)	as	consequent	<<<')
print()
for	indice,	regla	in	reglas_consecuente_BRAFmut.iterrows():
		print('RULE	%d'	%(indice+1))
		print(regla['antecedents'],	'	----->	',	regla['consequents'])
		print('Consequent	support:	%f'	%	regla['consequent	support'])
		print('Rule	support:	%f'	%	regla['support'])
		print('Confidence:	%f'	%	regla['confidence'])
		print('Lift:	%f	'	%	regla['lift'])
		print('Leverage:	%f'	%	regla['leverage'])
		print()

>>>	Rules	with	(MUTATIONSUBTYPES=BRAF_Hotspot_Mutants)	as	consequent	<<<

RULE	1
['LYMPHOCYTE.SCORE=0.0',	'MethTypes.201408=hypo-methylated',	'RNASEQ-CLUSTER_CONSENHIER=MITF-low']		
----->		['MUTATIONSUBTYPES=BRAF_Hotspot_Mutants']
Consequent	support:	0.450450
Rule	support:	0.018018
Confidence:	1.000000
Lift:	2.220000	
Leverage:	0.009902

RULE	2
['MIRCluster=MIR.type.1',	'RNASEQ-CLUSTER_CONSENHIER=MITF-low']		----->		['MUTATIONSUBTYPES=BRAF_Hot
spot_Mutants']
Consequent	support:	0.450450
Rule	support:	0.036036
Confidence:	0.857143
Lift:	1.902857	
Leverage:	0.017098

RULE	3
['MIRCluster=MIR.type.1',	'MethTypes.201408=hypo-methylated',	'RNASEQ-CLUSTER_CONSENHIER=MITF-low']		
----->		['MUTATIONSUBTYPES=BRAF_Hotspot_Mutants']
Consequent	support:	0.450450
Rule	support:	0.021021
Confidence:	1.000000
Lift:	2.220000	
Leverage:	0.011552

RULE	4
['MIRCluster=MIR.type.4',	'MethTypes.201408=hyper-methylated',	'RNASEQ-CLUSTER_CONSENHIER=MITF-low']		
----->		['MUTATIONSUBTYPES=BRAF_Hotspot_Mutants']
Consequent	support:	0.450450
Rule	support:	0.033033
Confidence:	1.000000
Lift:	2.220000	
Leverage:	0.018153

RULE	5
['LYMPHOCYTE.SCORE=2.0',	'MethTypes.201408=hyper-methylated',	'RNASEQ-CLUSTER_CONSENHIER=MITF-low']		
----->		['MUTATIONSUBTYPES=BRAF_Hotspot_Mutants']
Consequent	support:	0.450450
Rule	support:	0.021021
Confidence:	0.875000
Lift:	1.942500	
Leverage:	0.010199

All	the	rules	with	"MUTATIONSUBTYPES=BRAF_Hotspot_Mutants"	in	the	consequent	contain	"RNASEQ-CLUSTER_CONSENHIER=MITF-low"	in	the
antecedent.	Roughly	speaking	we	can	say	that,	in	addition	to	the	MITF-low	cluster,	BRAF	hot-spot	mutations	also	seem	to	be	related	to	hyper-methylated
and	hypo-methylated	methylation	clusters,	to	type	1	and	type	4	MIRClusters,	and	to	low	values	for	lymphocytes.

RULE	2	is	the	most	general	one,	has	the	highest	level	of	support,	and	contains	only	2	variables	in	the	antecedent	but	also	has	the	lowest	confidence
value.	The	other	4	rules	include	the	"MethTypes.201408"	variable	in	their	priors	and	have	higher	confidence	values.	In	fact,	the	only	difference	between
RULE	2	and	RULE	3	is	that	the	latter	incorporates	the	item	"MethTypes.201408=hypo-methylated"	which	allows	it	to	reach	a	confidence	of	1,	compared	to
0.857	for	RULE	2.	Therefore,	considering	whether	the	instance	belongs	to	the	hypo-methylated	cluster	allows	us	to	more	reliably	identify	a	subgroup	of
patients	who	will	present	BRAF-type	mutations.

If	we	continue	to	pay	attention	to	the	"MethTypes.201408"	variable	we	can	distinguish,	on	the	one	hand,	rules	1	and	3	in	which	the	hypo-methylated
cluster	appears	and,	on	the	other	hand,	rules	4	and	5	in	which	the	hyper-methylated	cluster	appears.	Depending	on	the	rule,	the	"LYMPHOCYTE.SCORE"
variable	or	the	"MIRCluster"	variable	appears	in	each	subgroup.	Thus,	as	was	the	case	with	methylation	("MethTypes.201408"),	it	appears	that	microRNA
clustering	makes	it	easier	to	identify	a	particular	subgroup	of	patients	with	BRAF-like	mutations	with	greater	certainty.	This	points	to	two	subgroups	of
patients	with	BRAF-like	mutations	belonging	to	the	"MITF-low"	cluster	and	with	low	levels	of	lymphocytes:

Patients	for	whom	low	methylation	values	are	observed	and	are	related	to	the	"MIRCluster	MIR.type.1"
Patients	for	whom	high	methylation	values	are	observed	and	are	related	to	the	"MIRCluster	MIR.type.4"

These	results	seem	to	corroborate	that	the	groupings	created	in	the	various	clustering	analyses	allowed	us	to	reliably	distinguish	different	patient	profiles.

4.4	What	next?

This	is	just	one	example	of	the	type	of	AR-based	analysis	that	can	be	performed	on	a	problem	such	as	the	melanoma	dataset	we	are	working	with	in	this
course.	Depending	on	our	specific	objective,	we	may	be	interested	in	focusing	more	on	one	or	another	subset	of	rules	or	in	taking	an	overview	of	how	the
different	variables	in	the	dataset	are	related	to	each	other.

We	encourage	you	to	try	exploring	other	subsets	of	rules	that	give	us	information	about	different	subtypes	of	melanoma	patients.	Being	able	to	detect
different	patient	profiles	and	characterize	them	helps	us	to	understand	why	patients	have	different	prognoses	or	react	differently	to	treatments,	allowing	us
to	be	more	effective	in	choosing	the	best	treatment	for	each	type	of	patient.

BIBLIOGRAPHIC	REFERENCES
Pandas	library	documentation:	https://pandas.pydata.org/docs/getting_started/overview.html
(https://pandas.pydata.org/docs/getting_started/overview.html)
MLXTEND	library	code	and	documentation:	http://rasbt.github.io/mlxtend/	(http://rasbt.github.io/mlxtend/)
Matplotlib	library	documentation:	https://matplotlib.org/contents.html	(https://matplotlib.org/contents.html)
Using	rpy2	in	notebooks:	https://rpy2.github.io/doc/latest/html/notebooks.html	(https://rpy2.github.io/doc/latest/html/notebooks.html)
Plotly	Express	documentation:	https://plotly.com/python/plotly-express/	(https://plotly.com/python/plotly-express/)

MOOC	Machine	Learning	y	Big	Data	para	la	Bioinformática	http://abierta.ugr.es

https://pandas.pydata.org/docs/getting_started/overview.html
http://rasbt.github.io/mlxtend/
https://matplotlib.org/contents.html
https://rpy2.github.io/doc/latest/html/notebooks.html
https://plotly.com/python/plotly-express/

