
Machine Learning and Big Data for Bioinformatics

Module 6 - Non-Supervised Learning: Clustering and Association Rules

Capsule 2 - Clustering
Authors:

Carlos Cano Gutiérrez

Associate Professor at University of Granada. Departament of Computer Science and A.I.

INDEX

In this notebook:

1. You will learn how to apply different clustering algorithms (hierarchical and K-means) to identify groups of genes and samples in gene expression matrices.
2. You will learn how to interpret the results of clustering algorithms. You will visually evaluate the quality of the results obtained.
3. You will learn how to use metrics to automatically evaluate the quality of clustering results and choose the number of groups () that best captures the

structure of the data.

Contents:

1. Introduction to the problem
2. Hierarchical Clustering
3. Clustering by partitioning: K-means
4. Additional content

𝐾

INSTALLATION OF LIBRARIES

In []: !pip install fastcluster
!pip install yellowbrick

1. INTRODUCTION

Gene expression data are a very valuable source of information for understanding how gene regulatory mechanisms work. We recall that in module 2 we
learned how to interpret this type of data and how it is represented.

An expression matrix is a numerical matrix 𝐸 containing the expression value of different genes (one per row) for different samples (one per column). Thus, we
will note that the expression value of gene for sample is placed in box (matrix , row , column).

Depending on the experimental technique used to obtain these expression values, they may represent different physical quantities, e.g., a copy number count
of each gene, the ratio of the copy number to a control or housekeeping gene, the intensity of a fluorescent signal, etc. In any of these cases, the expression
matrix collects these numerical values that represent the degree of activity or expression of each gene in each of the samples. It is a requirement that the
expression values of the genes and samples that appear in the same expression matrix have all been obtained with the same experimental technique and have
undergone the same preprocessing and normalization process (so that the data are on the same scale and are directly comparable with each other). Otherwise,
there is no guarantee that the cluster analysis we perform will yield reliable results.

In Capsule 1 we learned that Clustering is used to identify groups in the data without using any a priori available information about known categories, types,
classes or groups in the data. In this problem, clustering would allow us to answer the following questions:

1. Is there any way to cluster genes based on their expression profile? That is, can we identify genes that behave in the same way for all samples in the
study? Answering this question will be of interest because if a group of genes behave the same way in different biological samples it probably implies that
those genes are involved in the same biological processes or play a related biological role in gene regulation processes. This may help us to understand
the mechanisms that regulate disease and their molecular basis.

1. Is there a way to samples based on their expression profile? Or rephrased, can we identify groups of similar samples? Answering this question will allow us
to identify groups of patients with similar gene expression profiles, and therefore, patients who are candidates for the same diagnosis, treatment or
prognosis.

Our ability to adequately answer these two questions will depend on several factors:

1. The quality of the starting data.
2. The volume of baseline data.
3. Our expertise to perform adequate, rigorous and comprehensive preprocessing, normalization and cluster analysis.

The higher the value of these three factors, the closer we will be to providing an accurate answer to the above biological questions.

𝑖 𝑗 𝐸[𝑖][𝑗] 𝐸 𝑖 𝑗

1.1. DATA INPUT

To illustrate different clustering algorithms and their operation on an expression matrix, we will first load the expression matrix of 1500 genes obtained in
Module 2.

In []: # Importamos la librería pandas con el alias 'pd'
import pandas as pd

Almacenamos el enlace a nuestros datos en la variable 'url_datos'
url_datos = 'https://drive.google.com/uc?id=1OzVlp4RsT63W6d18_Zc5WmUonLXMDNL8'

El método read_csv permite leer un fichero de texto separado por un carácter que actúa como delimitador de campo, en
nuestro caso, el tabulador ('\t')
mexpr = pd.read_csv(url_datos, delimiter='\t')

mexpr

2. HIERARCHICAL CLUSTERING

Hierarchical Clustering algorithms take a set of instances (in our case, genes or samples), calculate the distances between the instances according to the
distance measure we indicate and build a dendrogram. As introduced in Capsule 1 of this module, a dedrogram is a hierarchy of clusters, i.e., it represents how
instances are related to each other resulting in clusters of different sizes.

The following code cell illustrates how to perform hierarchical clustering on genes and samples using the seaborn library's clustermap function

In []: # Librerías
import seaborn as sns
import pandas as pd
from matplotlib import pyplot as plt

Representación gráfica por defecto
sns.clustermap(mexpr)

To better understand the resulting dendrograms, we will select only a portion of the expression matrix (50 genes and 20 samples) and repeat the following
process.

In []: # Definimos una matriz de expresión mas pequeña para jugar con ella: mexpr_toy
mexpr_toy = mexpr.iloc[0:49, 0:19]
sns.clustermap(mexpr_toy)

The results of hierarchical clustering algorithms are usually represented by this type of heatmap type graphical representation, on which the dendrogram
obtained for the rows and/or columns is indicated. This representation is very useful to visually validate the clusters obtained.

Note that with this function we have applied the same clustering algorithm twice:

1. Clustering on the genes (using the genes as instances and the samples as variables), obtaining the dendrogram shown over the rows, and, independently,
2. Clustering on the samples (using the samples as instances and the genes as variables), obtaining the dendrogram shown above the columns.

Look at the color patterns in the heatmap above. Do you think the clustering algorithm reveals some homogeneous groups in the data? Would you be able to
visually identify these groups?

In this case, it is relatively straightforward to identify some groups of genes that appear to show similar expression patterns. If we manually annotate on the
figure these clusters, we could identify something like what is shown in the figure below:

Figure 1. Manual annotations on the clustering results visually identifying groups of similar genes.

The pink and blue group show very high internal homogeneity (i.e., their genes behave very similar to each other). The green group appears somewhat more
heterogeneous. Note that this internal homogeneity/heterogeneity of the groups is also indicated in the dendrogram: the shorter the length of the branches
connecting the rows or groups of rows, the more similar or homogeneous are the resulting groups, and vice versa.

The identification of groups is not carried out manually, as we have done in this example, but is done automatically. We will learn more about how to do this
later.

It is noteworthy in this example that the blue gene cluster shows a distinct profile for two sets of samples. Based on the expression of the genes in this group, it
appears that we could divide the samples (columns) of this small study into two sets, as shown in the following image.

Figure 2. Manual annotations on the clustering results visually identifying two groups of samples

The black sample group presents a low expression value for the blue cluster genes, while the gray sample group presents a high expression value for these
same genes. In addition, the expression of the pink gene cluster also seems to indicate a differentiated expression that allows us to discriminate these two
groups of samples (black and gray) from other samples that do not resemble the rest and would each form their own group (they are called outliers). It should
be noted that these two groups of samples (black and gray) that we have identified visually do not fit well with the dendrogram obtained by the clustering
algorithm (the dendrogram shown above, above the columns). Let's see if by changing some parameters of the algorithm we can obtain dendrograms that
better capture the patterns we have visually identified.

2.1. DISTANCE MEASURES FOR INSTANCES AND GROUPS OF INSTANCES

2.1.1. DISTANCE MEASURES FOR INSTANCES

To use different measures of distance between instances we have to change the value to the metric variable. This variable has many possible values (see the
help to know them all), but we highlight some very popular ones for continuous variables: euclidean , cosine , correlation , cityblock (manhattan),
chebyshev and minkowski .

In []: sns.clustermap(mexpr_toy, metric="euclidean")
sns.clustermap(mexpr_toy, metric="correlation")
sns.clustermap(mexpr_toy, metric="cosine")
sns.clustermap(mexpr_toy, metric="cityblock")
sns.clustermap(mexpr_toy, metric="chebyshev")
sns.clustermap(mexpr_toy, metric="minkowski")

The first plot is the one we had already analyzed, because by default the Euclidean distance is used to elaborate the heatmaps. From this series, it seems that
the second figure is the one that offers the dendrogram of samples more in accordance with the samples that we had manually identified on the previous
results. Let us look at this result again:

In []: sns.clustermap(mexpr_toy, metric="correlation")

We manually annotated this result to verify that the most homogeneous clusters of genes (blue and pink) and samples (black and gray) are clearly identifiable in
this heatmap and the corresponding dendrograms are consistent with these groups.

Figure 3. Manual annotations on the clustering results visually identifying groups of similar genes and samples.

2.1.2. Distance measures between clusters

Once we have learned the parameters that we can modify to define the distance measure between instances, we now need to specify the way to calculate the
distance measure between clusters, as explained in Capsule 1 of this module. To do this, we choose a method in the argument method : single ,
complete , average , centroid , median , ward

In []: sns.clustermap(mexpr_toy, metric="correlation", method="single")
sns.clustermap(mexpr_toy, metric="correlation", method="complete")
sns.clustermap(mexpr_toy, metric="correlation", method="average")
sns.clustermap(mexpr_toy, metric="correlation", method="centroid")
sns.clustermap(mexpr_toy, metric="correlation", method="ward")

Collecting fastcluster
 Downloading fastcluster-1.2.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014
_x86_64.whl (194 kB)
 |████████████████████████████████| 194 kB 4.8 MB/s
Requirement already satisfied: numpy>=1.9 in /usr/local/lib/python3.7/dist-packages (from fastcluster) (1.21.5)
Installing collected packages: fastcluster
Successfully installed fastcluster-1.2.6
Collecting yellowbrick
 Downloading yellowbrick-1.4-py3-none-any.whl (274 kB)
 |████████████████████████████████| 274 kB 5.3 MB/s
Requirement already satisfied: matplotlib!=3.0.0,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from yellowbrick)
(3.2.2)
Requirement already satisfied: cycler>=0.10.0 in /usr/local/lib/python3.7/dist-packages (from yellowbrick) (0.11.0)
Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.7/dist-packages (from yellowbrick) (1.21.5)
Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from yellowbrick) (1.4.1)
Requirement already satisfied: scikit-learn>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from yellowbrick) (1.0.
2)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (fr
om matplotlib!=3.0.0,>=2.0.2->yellowbrick) (3.0.7)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib!=3.0.0
,>=2.0.2->yellowbrick) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib!=3.0.0,>=
2.0.2->yellowbrick) (1.3.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplot
lib!=3.0.0,>=2.0.2->yellowbrick) (1.15.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=1.0
.0->yellowbrick) (3.1.0)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=1.0.0->yell
owbrick) (1.1.0)
Installing collected packages: yellowbrick
Successfully installed yellowbrick-1.4

Out[]:
TCGA-

D9-A4Z6-
06

TCGA-
EE-

A2MQ-06

TCGA-
EE-

A3AF-06

TCGA-
ER-

A19F-06

TCGA-
EE-

A2MF-06

TCGA-
EE-

A2MJ-06

TCGA-
BF-

AAP4-01

TCGA-
D3-

A8GM-06

TCGA-
GN-

A26A-06

TCGA-
EB-A3XE-

01

TCGA-
DA-A1I0-

06

TCGA-
FR-

A3R1-01

TCGA-
EE-

A3AA-06

TCGA-
W3-

AA21-06

TYRP1 7.941545 2.750463 -5.566030 -4.907263 5.546815 7.036795 1.296667 8.453333 -4.295078 -2.822735 5.343145 -7.718614 -7.908148 4.485929

RPS4Y1 3.475878 -9.252088 -8.781994 -1.866586 -7.544166 0.983460 3.230248 1.556010 -8.687076 -8.216183 3.064411 2.580197 2.195396 -1.716290

KRT6A -2.734785 0.420073 0.026095 0.850417 -2.374815 3.097854 2.583622 -2.734785 -1.190053 13.664241 -0.072284 -1.998570 6.665974 -2.734785

XIST -2.903056 8.320289 6.928525 -3.042341 9.475711 -3.487538 -2.690857 -3.487538 8.461294 6.168198 -3.487538 -1.380218 -1.269842 0.339875

KRT14 -3.653679 -2.898792 -0.531967 0.375261 -0.798866 1.482611 1.573041 -3.232954 0.714726 13.313004 -1.176080 -0.716749 4.210739 -3.653679

...

PKIA -1.922342 -2.127497 0.448158 0.625836 -2.786388 1.134153 -0.642194 -1.485640 1.812315 -0.673633 -1.786160 -2.022276 0.131983 -0.561330

EBF3 5.692378 0.087663 -0.577546 -1.479500 -2.187748 1.941861 0.008428 -0.670875 -1.111173 0.183837 -0.263533 -2.200869 1.262887 -1.809219

TMEM100 -0.362261 -0.211399 -1.015896 -2.361179 -1.713450 1.505314 -0.132976 -0.761052 5.336592 0.017804 -0.214752 -1.946610 0.382810 -1.330631

PLEKHG4B 5.755474 0.199884 0.992465 -1.441778 -2.361887 1.763763 0.966931 7.637215 1.254673 2.629747 -0.992941 -1.425952 -1.407729 -0.792509

SLA2 -2.970178 -0.390041 0.730184 -1.370144 -0.416322 2.821924 1.797944 0.708631 0.417630 0.812380 0.867899 0.614048 1.392335 -0.618260

1500 rows × 473 columns

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a994def50>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a900e0ed0>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a8e19fdd0>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a8d84eed0>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a8d37cf50>

At first glance, the dendrograms that most seem to reflect the structures that we had identified from the visual inspection of the heatmaps are those obtained
by the average (this is the result that we had already analyzed in the previous code cell because it is the default value for method) and ward methods.

It is important to note here that the goodness of the results obtained depends on both metrics: the metric chosen to calculate the distance between instances
and the method to calculate the distance between groups. That is, these metrics are mutually dependent. In this case, from the analysis of this subset of data,
we could draw the preliminary conclusion that the correlation metric works best for these data with the average and ward methods. If we change the metric
between objects, we should reconsider, again, all methods of calculating distance between groups, to find the best combination of both.

For example, if we want to evaluate results for the Euclidean distance, we would have to reconsider again all the methods for calculating the distance between
groups to find the best combination of both.

In []: sns.clustermap(mexpr_toy, metric="euclidean", method="single")
sns.clustermap(mexpr_toy, metric="euclidean", method="complete")
sns.clustermap(mexpr_toy, metric="euclidean", method="average")
sns.clustermap(mexpr_toy, metric="euclidean", method="centroid")
sns.clustermap(mexpr_toy, metric="euclidean", method="ward")

It appears that complete and ward are the ones that, for euclidean distance, provide dendrograms that visually correspond best to the sample sets
analyzed in this small test set.

2.2. Evaluation of the obtained clusters

So far, we are visually evaluating the results obtained by different variants of hierarchical clustering to choose the result that seems most consistent with the
observed patterns. This is allowing us to understand how clusters and dendrograms are interpreted, and to validate the results obtained by the different
methods used. While the didactic purpose of this approach is clear, it is important to emphasize that in a larger problem it will probably be difficult to appreciate
at a glance which of the possible variants of an algorithm obtains more consistent results. However, as already introduced in Capsule 1 of this module, there
are metrics to quantitatively and automatically evaluate the results obtained by different clustering algorithms or methods.

In the section "How do we choose the number of clusters?" we will study some of these metrics.𝐾

2.3. Notes on the heatmaps.

The dendrograms of the heatmaps can be colored to indicate some categories of the data that are relevant for interpreting the plot. For example, if we have
samples of different tumor types, it might be interesting to visually check whether or not the groups detected by the hierarchical clustering correspond to these
sample categories.

The following code cells illustrate how to use an additional variable (in this case, tumor type: primary or metastatic) to color the samples according to their type
and visually check if this type matches the clusters obtained in the dendrogram.

To do this, we first download the data with additional information about the samples.

In []: # Importamos la librería pandas con el alias 'pd'
import pandas as pd

Almacenamos el enlace a nuestros datos en la variable 'url_datos'
url_datos = 'https://drive.google.com/uc?id=1ehBCICJrAqm5AUIDXca51IWIoyy-p9FY'

El método read_csv permite leer un fichero de texto separado por deliminatdores, en nuestro caso, tabuladores ('\t')
base_datos = pd.read_csv(url_datos, delimiter='\t')

base_datos

Select only the definition column indicating the type of tumor (Primary solid Tumor or Metastatic). We store this information in the variable
tipo_tumor (tumor_type). Let's see this information for the first 20 samples.

In []: tipo_tumor = base_datos.pop("definition")
tipo_tumor[0:19]

We repaint the heatmap for this reduced set of samples, indicating that the colors of the columns (col_colors argument of the sns.clustermap
function) are colors (red r , blue b , green g , yellow y) associated with the different tumor types according to the tumor_type variable. We have used
four colors because this variable has four possible values, although in the first 20 samples only red (for the Metastatic type) and blue (for the primary
solid tumor type) appear.

In []: color_map = dict(zip(tipo_tumor.unique(), "rbgy"))
sample_color = tipo_tumor.map(color_map)
sns.clustermap(mexpr_toy, metric="correlation", method="average", col_colors=list(sample_color[0:19]))

We can see that, in this case, there is no correspondence between the tumor category (primary or metastatic) and the groups of samples obtained. The
expression profiles of these fifty genes are revealing to us another different way of grouping the samples that does not correspond to this categorization,
already known a priori for the samples.

If we use the complete matrix, the clusters obtained can help us to elaborate new hypotheses about the molecular bases that reveal these groupings in the
samples.

2.4. Results on the full matrix

Once we have validated the most appropriate method on smaller problem instances, we will apply the best combination of parameters obtained on the full
expression matrix. To improve the result and the visualization of clusters by samples, we normalize the column values to the range with the parameter
standard_scale=1 .

[0, 1]

In []: color_map = dict(zip(tipo_tumor.unique(), "rbgy"))
color_map
sample_color = tipo_tumor.map(color_map)
sns.clustermap(mexpr, metric="correlation", method="average", col_colors=list(sample_color), standard_scale=1)

The results obtained on the full matrix are similar to those obtained by the authors of TCGA's own skin melanoma research paper or those we obtained using R
to add more information about the samples in Module 2 of the course:

With this result, the authors study how the groups of samples obtained from the expression matrix relate to the information already known about these samples
and to the survival time of the patients. We recommend reading this research article (Reference number 3 of this Capsule) to find out more.

3. CLUSTERING BY PARTITIONING: ALGORITHM K-MEANS

K-means is a partitioning clustering algorithm whose objective is to separate objects into 𝐾 disjoint sets by minimizing the sum of squared distances of the
objects in each cluster. To do this, the algorithm needs to know a priori how many clusters are in the data (i.e., it needs to know the value of 𝐾).

As a result of running a K-means algorithm the user obtains the resulting clusters (i.e., an assignment of objects to each cluster) and the centroid or
representative of each of the 𝐾 clusters.

This is novel with respect to hierarchical clustering algorithms, because it provides us with a kind of object representative of all objects in each group. On the
other hand, a disadvantage is that it requires us to set a priori the value of 𝐾 , the number of groups.

To learn how to apply the K-means algorithm on gene expression data and learn how to interpret the results, we will start by using a small expression matrix,
the mexpr_toy matrix generated in previous examples. After understanding how to interpret and visualize the results, we will discuss different means to
estimate a priori the value of 𝐾 , the number of clusters. Finally, we will apply the acquired knowledge to the analysis of a full expression matrix.

3.1. We learn how to use the algorithm on a small problem.

First, we illustrate how to apply a k-means algorithm on the sample data of the expression matrix mexpr_toy . Unlike the previous clustertermap
function, with k-means we can only apply clustering simultaneously on the genes or on the expression matrix samples. The clustering function we use
considers each row of the matrix as an object, so in case we want to perform clustering on the samples (as in the following code cell), we must first transpose
the matrix.

In []: from sklearn.cluster import KMeans
from sklearn import metrics
from sklearn import preprocessing

1- Definimos el algoritmo a emplear y sus parámetros.
El número de clusters n_clusters es especialmente relevante para el resultado de este algoritmo
Más información sobre posibles argumentos de KMeans aquí: https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.KMeans.html#sklearn.cluster.KMeans
k_means = KMeans(n_clusters=3)

2- Aplicamos el modelo de algoritmo definido en k_means sobre "datos"
datos = mexpr # descomenta esta línea para hacer clustering de las filas de la matriz (genes)
datos = mexpr_toy.transpose() # descomenta esta línea para hacer clustering de las columnas de la matriz (muestras)
cluster_predict = k_means.fit_predict(datos)

3- Ponemos el resultado en una tabla para que sea más cómodo de manejar
clusters = pd.DataFrame(cluster_predict,index=datos.index,columns=['cluster'])

clusters

The result of this algorithm is a table (dataframe) where the cluster corresponding to each sample is indicated. With this data we can calculate the size of each
cluster and what percentage of objects it contains with respect to the total.

In []: print("Tamaño de cada cluster:")
size=clusters['cluster'].value_counts()
for num,i in size.iteritems():
 print('%s: %5d (%5.2f%%)' % (num,i,100*i/len(clusters)))

To visualize the gene expression profiles associated with each of the clusters obtained, we can use a heatmap showing the centroid profiles of each group.

In []: centers = pd.DataFrame(k_means.cluster_centers_,columns=list(datos))
sns.heatmap(centers)

If you rerun the last three cells of code (from the beginning of section 3.1) you will see that, unlike the results obtained by hierarchical clustering, the results
obtained by the K-means algorithm change from one run to another.

This is because the result of the algorithm depends on the initial value of the centroids (by default, they are initialized with random values but distant from each
other in the solution space).

Most runs of this K-means algorithm derive sample groups of approximate size 60%, 35%, 5% of the objects, respectively, in which the minority group of
samples is an outlier. This is a grouping similar to that observed with the hierarchical clustering on this same matrix.

3.2. How do we choose the number of clusters 𝐾𝐾?

It is very important to note that the result of this algorithm depends dramatically on the choice of the value of 𝐾. For example, if we run the same code as above
but with 𝐾 = 2

In []: k_means = KMeans(n_clusters=2)
datos = mexpr_toy.transpose()
cluster_predict = k_means.fit_predict(datos)
clusters = pd.DataFrame(cluster_predict,index=datos.index,columns=['cluster'])

print("Tamaño de cada cluster:")
size=clusters['cluster'].value_counts()
for num,i in size.iteritems():
 print('%s: %5d (%5.2f%%)' % (num,i,100*i/len(clusters)))

centers = pd.DataFrame(k_means.cluster_centers_,columns=list(datos))
sns.heatmap(centers)

We will probably obtain (although the result changes with each run) a majority cluster of 95% of elements and an outlier that forms its own group. This solution
is not very informative (beyond letting us know that there is a sample with a very different behavior from the rest).

Thus, estimating a priori the number of groups in the data is a very relevant task and will largely determine the results obtained by the clustering algorithm.

The most common procedure to perform this estimation is to run the clustering algorithm for different values of 𝐾 and comparatively evaluate the results
obtained, choosing those that obtain a better partitioning of the data. To determine the best result, different clustering goodness-of-fit metrics are used. The

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a8d644490>

Out[]:
definition subtype_RNASEQ.CLUSTER_CONSENHIER subtype_MUTATIONSUBTYPES

TCGA-D9-A4Z6-06A-12R-A266-07 Metastatic NaN NaN

TCGA-EE-A2MQ-06A-11R-A18S-07 Metastatic NaN NaN

TCGA-EE-A3AF-06A-11R-A18S-07 Metastatic NaN NaN

TCGA-ER-A19F-06A-11R-A18S-07 Metastatic NaN NaN

TCGA-EE-A2MF-06A-11R-A21D-07 Metastatic NaN NaN

...

TCGA-D3-A3MU-06A-11R-A21D-07 Metastatic NaN NaN

TCGA-EE-A2GO-06A-11R-A18S-07 Metastatic NaN NaN

TCGA-FR-A8YC-06A-11R-A37K-07 Metastatic NaN NaN

TCGA-DA-A1I2-06A-21R-A18U-07 Metastatic NaN NaN

TCGA-D3-A2JK-06A-11R-A18S-07 Metastatic NaN NaN

473 rows × 3 columns

Out[]: TCGA-D9-A4Z6-06A-12R-A266-07 Metastatic
TCGA-EE-A2MQ-06A-11R-A18S-07 Metastatic
TCGA-EE-A3AF-06A-11R-A18S-07 Metastatic
TCGA-ER-A19F-06A-11R-A18S-07 Metastatic
TCGA-EE-A2MF-06A-11R-A21D-07 Metastatic
TCGA-EE-A2MJ-06A-11R-A18S-07 Metastatic
TCGA-BF-AAP4-01A-11R-A40A-07 Primary solid Tumor
TCGA-D3-A8GM-06A-11R-A37K-07 Metastatic
TCGA-GN-A26A-06A-11R-A18T-07 Metastatic
TCGA-EB-A3XE-01A-12R-A239-07 Primary solid Tumor
TCGA-DA-A1I0-06A-11R-A20F-07 Metastatic
TCGA-FR-A3R1-01A-11R-A239-07 Primary solid Tumor
TCGA-EE-A3AA-06A-11R-A18S-07 Metastatic
TCGA-W3-AA21-06A-11R-A38C-07 Metastatic
TCGA-D9-A6EA-06A-11R-A311-07 Metastatic
TCGA-D3-A5GU-06A-11R-A27Q-07 Metastatic
TCGA-EE-A29X-06A-11R-A18T-07 Metastatic
TCGA-EB-A4IS-01A-21R-A266-07 Primary solid Tumor
TCGA-GF-A769-01A-32R-A32P-07 Primary solid Tumor
Name: definition, dtype: object

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a8da59a10>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a8d1eb490>

Out[]:
cluster

TCGA-D9-A4Z6-06 0

TCGA-EE-A2MQ-06 0

TCGA-EE-A3AF-06 0

TCGA-ER-A19F-06 1

TCGA-EE-A2MF-06 1

TCGA-EE-A2MJ-06 0

TCGA-BF-AAP4-01 1

TCGA-D3-A8GM-06 0

TCGA-GN-A26A-06 1

TCGA-EB-A3XE-01 2

TCGA-DA-A1I0-06 0

TCGA-FR-A3R1-01 1

TCGA-EE-A3AA-06 0

TCGA-W3-AA21-06 1

TCGA-D9-A6EA-06 0

TCGA-D3-A5GU-06 0

TCGA-EE-A29X-06 0

TCGA-EB-A4IS-01 1

TCGA-GF-A769-01 0

Tamaño de cada cluster:
0: 11 (57.89%)
1: 7 (36.84%)
2: 1 (5.26%)

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1a8b59d510>

Out[]:

Tamaño de cada cluster:
0: 10 (52.63%)
1: 9 (47.37%)

<matplotlib.axes._subplots.AxesSubplot at 0x7f1a8ac9c2d0>

most popular ones are the Silhouette index (silhouette) and the Calinski-Harabasz index (calinski_harabasz).

The following code illustrates how to calculate the value of these indices for different values of 𝐾 . The value of 𝐾 that obtains higher values for these indices
will be the chosen value. The yellowbrick.cluster.KElbowVisualizer function allows you to do this whole process with a few lines, graphically
representing the values of the indices obtained for different 𝐾 .

In []: from yellowbrick.cluster import KElbowVisualizer

datos = mexpr_toy.transpose()

modelo = KMeans()
visualizer = KElbowVisualizer(modelo, k=(2,10), metric='silhouette', timings=False, locate_elbow=True)
visualizer.fit(datos)
visualizer.show()

For example, according to the silhouette index, the optimal value of K is 2. We now try the Calinski-Harabasz metric:

In []: visualizer = KElbowVisualizer(modelo, k=(2,10), metric='calinski_harabasz', timings=False, locate_elbow=True)
visualizer.fit(datos)
visualizer.show()

With Calinski-Harabasz the optimal value of K is 3.

If we need to calculate the goodness of clustering on a particular result with the Silhouette or Calinski-Harabasz indices, we would proceed as shown in the
following cell of code

In []: from math import floor

1- Hacemos el clustering
k_means = KMeans(n_clusters=3)
datos = mexpr_toy.transpose()
cluster_predict = k_means.fit_predict(datos)

2- Con el resultado del cluster (cluster_predict) calculamos los índices Silueta y Calinski-Harabasz para ese result
ado
indice_Silueta = metrics.silhouette_score(datos, cluster_predict)
print("Índice Silueta: "+str(indice_Silueta))
indice_CH = metrics.calinski_harabasz_score(datos, cluster_predict)
print("Índice Calinski-Harabasz: "+ str(indice_CH))

3.3. K-means on full expression matrices

With what we learned above, we apply K-means on a full expression matrix. To do so, we first estimate the optimal number 𝐾. In these estimates, we turn on
the timings=True option to also have a green line painted on the graph with the time consumed by the clustering for each value of 𝐾 that is tested

In []: from yellowbrick.cluster import KElbowVisualizer

datos = mexpr.transpose()

modelo = KMeans()

visualizer = KElbowVisualizer(modelo, k=(2,20), metric='silhouette', timings=True, locate_elbow=True)
visualizer.fit(datos)
visualizer.show()

In []: visualizer = KElbowVisualizer(modelo, k=(2,20), metric='calinski_harabasz', timings=True, locate_elbow=True)
visualizer.fit(datos)
visualizer.show()

From the view of both plots, it appears that 𝐾=2 is the result most faithful to the structure and variability of the underlying data. We apply k-means for 𝐾=2 and
paint the resulting centroids.

In []: k_means = KMeans(n_clusters=2)
datos = mexpr.transpose()
cluster_predict = k_means.fit_predict(datos)
clusters = pd.DataFrame(cluster_predict,index=datos.index,columns=['cluster'])

print("Tamaño de cada cluster:")
size=clusters['cluster'].value_counts()
for num,i in size.iteritems():
 print('%s: %5d (%5.2f%%)' % (num,i,100*i/len(clusters)))

centers = pd.DataFrame(k_means.cluster_centers_,columns=list(datos))
sns.heatmap(centers)

4. ADDITIONAL CONTENT

4.1. Outlier detection and removal

Fucntion sns.clustermap allows to identify and omit outliers from the result representation.

In []: # ejecución normal
sns.clustermap(mexpr, metric="correlation", method="average")

ejecución utilizando detección de outliers
sns.clustermap(mexpr, metric="correlation", method="average", robust=True)

4.2. CHANGING THE PLOTS

In []: # Cambios en la paleta de colores
sns.clustermap(mexpr_toy, metric="euclidean", z_score=1, method="ward", cmap="mako")
sns.clustermap(mexpr_toy, metric="euclidean", z_score=1, method="ward", cmap="viridis")
sns.clustermap(mexpr_toy, metric="euclidean", z_score=1, method="ward", cmap="Blues")

4.3. Data normalization

The clustermap function allows transformations to be performed on the input data:

standardization of the range of the variables to (parameter standard_scale=0 to apply this transformation to the rows, standard_scale=1 to
apply it to the columns).
normalization by calculating z-score (parameter z_score=0 to apply this transformation to the rows, z_score=1 to apply it to the columns)

Thus, in case our starting data are not normalized, these options can be used to do so in the same clustermap function. In our case, we show these options
to illustrate their effects on the data, although the normalization of this expression matrix has already been carried out in Module 2, so we do not need to apply
further normalization measures.

[0, 1]

In []: # Estandarización:
sns.clustermap(mexpr_toy, standard_scale=1)
Normalización (z-score)
sns.clustermap(mexpr_toy, z_score=0)

4.4. Hierarchical clustering on rows or columns only

To perform hierarchical clustering only on rows (genes), we need to use the following parameters

In []: sns.clustermap(mexpr_toy, row_cluster=True, col_cluster=False)

To perform only the cluster on the columns

In []: sns.clustermap(mexpr_toy, row_cluster=False, col_cluster=True)

4.5. What Now? More clustering algorithms

There are numerous clustering algorithms already implemented in Python. After finishing this module, we recommend you to explore the tutorials in Scikit-learn:
Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. In particular, the chapter on Clustering: https://scikit-
learn.org/stable/modules/clustering.html#clustering

BIBLIOGRAPHY
Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. En particular, el capítulo de Clustering: https://scikit-
learn.org/stable/modules/clustering.html#clustering
Seaborn Clustermap https://seaborn.pydata.org/generated/seaborn.clustermap.html
Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161(7):1681‐1696. doi:10.1016/j.cell.2015.05.044
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580370/

MOOC Machine Learning y Big Data para la Bioinformática (2ª edición) http://abierta.ugr.es

In []:

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1a8da82090>

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1a8e12d6d0>

Índice Silueta: 0.13714907002346644
Índice Calinski-Harabasz: 4.379187631804513

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1a8e0ed190>

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1a899cdb90>

Out[]:

Tamaño de cada cluster:
0: 403 (85.20%)
1: 70 (14.80%)

<matplotlib.axes._subplots.AxesSubplot at 0x7fbee984d4d0>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a898334d0>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a8d037050>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a89153850>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a88db4a90>

Out[]: <seaborn.matrix.ClusterGrid at 0x7f1a88cbb790>

