
Module 5.2 Standard classification methods.

Author:

By Prof. Alberto Fernández Hilario

Associate Professor at the University of Granada, Andalusian Interuniversity Institute on
Data Science and Computational Intelligence (DasCI)

Brief Instructions

Reminder: Introduction to NoteBook

The Jupyter (Python) notebook is an approach that combines blocks of text (like this one)
along with blocks or cells of code. The great advantage of this type of cells is their
interactivity, as they can be executed to check the results directly on them.

Very important: the order of the instructions (code blocks) is fundamental, so each cell of
this notebook must be executed sequentially. In case of omitting any of them, the program
may throw an error (an exit block will be displayed with a red message in English), so you
should start from the beginning in case of doubt. To make this step easier, you can go to the
"Run Environment" menu and click on "Run previous".

Go for it!

Click on the "play" button on the left side of each code cell. Lines starting with a hashtag (#)
are comments and do not affect the execution of the programme.

You can also click on each cell and do "ctrl+enter" (cmd+enter on Mac).

When the first of the blocks is executed, the following message will appear:

"Warning: This notebook was not created by Google.

The creator of this notebook is @go.ugr.es. It may request access to your data stored in Google
or read data and credentials from other sessions. Please review the source code before
running this notebook. If you have any questions, please contact the creator of this workbook
by sending an email to <author>@go.ugr.es. "

Don't worry, you will have to trust the contents of the Notebook and click on "Run anyway".
All the code runs on an external compute server and will not affect your computer at all. No
information or credentials will be requested, so you will be able to continue the course
safely.

Each time you run a block, you will see the output just below it. The information is usually
always the last instruction, along with any print() (print command) in the code.

INDEX

In this NoteBook:

1. We introduce ‘white box’ classification paradigms.
2. We describe classification methods based on linear models.
3. We will study the nearest-neighbors classification algorithm.
4. We present the algorithm used to obtain classification decision trees.
5. We will discuss the advantages and disadvantages of all the above classifiers.
6. We demonstrate how to use all these classifiers with Python in scikit-learn.
7. We provide graphical examples of the decision boundaries of each model and

consider their main differences in terms of their operation.

Contents:

1. Introduction.
2. Simple models: linear and logistic regression.
3. Classification based on the k-nearest neighbors model algorithm.
4. Decision trees.
5. Bibliography

1. INTRODUCTION

In this first section we will provide a general introduction to classification paradigms,
followed by specific examples of the paradigms described in this part of the course. We will
then follow up by explaining how to load the melanoma cancer case study data we have
been working with up until now.

1.1 Classification paradigms

In Capsule 1 of this module we highlighted the fact that there are several types of
discriminant functions which allow the enumeration of different classification paradigms
or models: ‘white box’ and ‘black box’ models.

This section of the course will mainly focus on the former because they are the ‘first line of
attack’ when one wants to solve a classification problem. The main reason for this is
because these models are relatively easy and fast and are usually highly interpretable. This
enables examination of the model components to identify the key variables used to divide
the classes.

Thus, they allow users to understand whether the model makes sense with respect to the
problem being studied, for example, from a biological point of view. Among the different
classification algorithms highlighted in this group, we will introduce those based on linear
and logistic regression, k-nearest neighbors, and decision trees.

1.2 Loading the problem data

To test the behavior of the different sorting algorithms, we start by loading the case study
data serving as the main thread throughout this course. The notation or code used is
exactly the same as in previous activities from other modules.

import pandas as pd

#We load the expression matrix omics data from a shared file on Google
Drive.
gene_exp_immune = pd.read_csv('https://drive.google.com/uc?
id=1PYzEIdmnfjOnBpPDIFBE9hL1Lkj_OBCk',index_col=0)
#We load the clinical variable corresponding to the labels "immune"
vs. "MITF-low".
clinical_info_immune = pd.read_csv('https://drive.google.com/uc?
id=1hHQfcvrFa5Jds-9tW_X4sHjKpYKdii9s',index_col=0)

X, y = gene_exp_immune, clinical_info_immune

#We print the first 5 samples of the dataset to check that it has been
loaded correctly.
X.head()

 COL2A1 RXRG CCL19 ... PLIN1 NCF1C SLC7A11
0 -1.431141 -7.845756 0.665118 ... 1.285256 -0.901222 2.483020
1 -0.424374 -8.352423 0.386055 ... -1.152801 0.662490 -2.914991
2 11.014251 0.415549 -1.633781 ... -1.976877 -1.400889 -2.266779
3 -1.180446 -8.187415 -1.958023 ... -1.329148 0.055994 -2.652313
4 0.816312 -1.189303 4.837235 ... 6.284688 1.450729 1.131275

[5 rows x 50 columns]

Additionally, we will use principal component analysis (PCA), which was introduced in
Module 2, to transform the data set to contain only two dimensions (two input variables).
This will allow the classification frontiers obtained by each classification technique to be
represented in a remarkably straightforward way.

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

import matplotlib.pyplot as plt

#Transform the initial dataset to be represented by only 2 variables
n_components = 2
pca = PCA(n_components=n_components)
X_2D = pca.fit_transform(X)

#The range of each variable is transformed to [0, 1].
st = StandardScaler()
X_2D = st.fit_transform(X_2D)

#We paint on a scatterplot the new 2D set
plt.scatter(X_2D[:, 0], X_2D[:, 1], cmap=plt.cm.Set1,
c=pd.get_dummies(y).iloc[:,0], edgecolor='k')
plt.title("2D representation of the melanoma cancer problem")
plt.xlabel('PCA_V1')
plt.ylabel('PCA_V2')
plt.xticks((()))
plt.yticks((()))
plt.show()

For simplicity, a default hold-out validation will be used for the examples included in this
NoteBook. For more details, see Module 3, Capsule 2 (Supervised learning).

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
random_state=42)

y_int = pd.get_dummies(y).iloc[:,0]

X_2D_train, X_2D_test, y_2D_train, y_2D_test = train_test_split(X_2D,
y_int, random_state=42)

print("Numero de instancias en entrenamiento: {}; y test:
{}".format(len(X_train),len(X_test)))

Numero de instancias en entrenamiento: 252; y test: 84

2. SIMPLE MODELS: LINEAR AND LOGISTIC REGRESSION

In Module 4 (Supervised Learning: regression techniques) we studied functions that can
approximate the actual output values for a set of data. This same idea can be applied
directly to classification, considering output values belonging to an ‘n-ary’ set (binary for
two classes) rather than in a real range. Here, first we will introduce the simplest possible
model based on simple linear regression. In other words, a model based on a separating
hyperplane (a ‘straight line’ dividing the instances). We will then extend this idea to
current knowledge about logistic regression.

2.1 Linear regression model

We will describe the primary features of this model and how it can be used in scikit-learn.

2.1.1. Introduction to the linear model

As discussed at the beginning of this section, to adapt the linear regression learning format
to a classification format, it is sufficient to learn or adjust the coefficients of a hyperplane
by trying to approximate the output to the default values {0, 1}, following the same scheme
of minimizing the residual sum of the squares. In this case, we must consider that we are
working with a binary classification problem in which the first class is identified with the
value “0” and the second with “1”.

Before continuing, it should be noted that hyperplanes are simple ‘cuts with a straight line’
for the classification of instances (i.e., they are a decision boundary). Thus, instances (or
data points) that lie on either side of the hyperplane (‘straight line’) will be predicted as
distinct classes. Logically, the dimension of the hyperplane depends on the number of input
variables; if there are 2 input variables, the hyperplane will be a simple straight line. When
the number of variables is 3, then the hyperplane becomes a two-dimensional plane.
Handling more than 3 dimensions becomes complicated for human users.

The formula that divides the input space into two parts will be as follows.

\begin{equation} \hat{y}(x,w) = w_0 + w_1 \cdot x_1 + \ldots + w_n \cdot x_n \
end{equation}

where w=(w1 ,…,wn) will be the coefficients associated with each input variable, and w0 is
the independent term. In the easy case of a one-dimensional problem, (one variable, x), one
would look for the classical straight line y=a ⋅ x+b.

2.1.2 Implementation in Scikit-Learn

To apply linear regression in classification tasks, the scikit-learn syntax is equivalent to the
regression case. In this case example, the calculated coefficients are shown for each
variable, (stored in the member variable coef_) and the independent term in the
intercept_.

from sklearn import linear_model

lm = linear_model.LinearRegression()

#Here we do a little "trick" which is to transform the categorical
output to {0,1} values.
#This step is necessary to apply the "regression" model which expects
a real type output.
y_train_int = pd.get_dummies(y_train).iloc[:,0]

lm.fit(X_train, y_train_int)
print(lm.intercept_)
lm.coef_

0.3371977981689104

array([0.00062339, -0.01640629, 0.05765623, -0.00365438, -
0.03219924,
 0.02831667, 0.02246995, 0.02406873, 0.04154468,
0.0113776 ,
 0.03335884, 0.02299525, -0.00375194, 0.04292671,
0.01228339,
 -0.01640771, 0.03062444, -0.00302422, -0.02929467,
0.00676286,
 -0.01947947, -0.02999738, 0.02491126, -0.0079843 , -
0.00937148,
 0.00456585, 0.00615687, -0.01706812, -0.0042064 , -

0.03262455,
 -0.03213231, 0.00450434, -0.05782194, -0.02456257,
0.0250594 ,
 -0.00637356, 0.04990764, -0.00675726, -0.04263797, -
0.07777568,
 0.03133627, 0.01415696, -0.07683601, -0.08607171, -
0.01192452,
 0.02302473, 0.06651956, -0.01050754, 0.04608665, -
0.00776793])

As in the regression tasks (Module 4), the absolute value of each coefficient indicates the
importance of that variable in approximating the output. Hence, we can interpret which
data properties are most influential in distinguishing the classes. The following table shows
a summary graph of the importance of the variables (subset of the genetic profiles of the
top 5 variables) based on the value of the coefficients of the discriminant function.

import numpy as np
from sklearn.preprocessing import normalize

importance = np.abs(lm.coef_) #transform to a one-dimensional list
#Normalize the values:
importance_norm = normalize(importance[:,np.newaxis], axis=0).ravel()

#The 5 most important are represented according to absolute value.
(pd.Series(importance_norm,
index=X_train.columns).nlargest(5).plot(kind='barh'))
plt.title("Linear Regressor Gene Panel Importance Ratio")
plt.show()

Next, we will examine the quality of predictions generated according to the standard
measure of accuracy (percentage correct). First, we note that the output obtained by the
model is not a discrete value but rather, is a real value given that we are using a regression
formula.

However, as indicated above, each class will be considered as an integer value. In this
binary classification case study, the “MITF-Low” class will be class 0 and “immune” will be
class 1, while a cut-off threshold of 0.5 will be used to determine the final class.

from sklearn.metrics import accuracy_score

#Transform the output back to a value {0,1}
y_test_int = pd.get_dummies(y_test).iloc[:,0]
y_pred = lm.predict(X_test)

print("Original predict values (top 10):")
print(y_pred[:10])
print()

print("Rounded prediction values (first 10):")

y_pred[y_pred >= 0.5] = 1
y_pred[y_pred < 0.5] = 0

print(y_pred[:10])
print()

acc_score = accuracy_score(y_test_int, y_pred)
print("Accuracy obtained:",acc_score)

Original predict values (top 10):
[1.29485689 -0.09064197 1.20110728 1.05823504 0.32454412
1.00993704
 0.65879706 0.6314562 0.2538342 0.45818503]

Rounded prediction values (first 10):
[1. 0. 1. 1. 0. 1. 1. 1. 0. 0.]

Accuracy obtained: 0.7142857142857143

2.2 Logistic regression model

2.2.1 Introduction to logistic regression

Despite the satisfactory results shown, linear regression is limited in many cases.
Therefore, a technique known as logistic regression is preferred for data science tasks.
Despite its name, it is a linear classification model rather than a regression model. In this
case, the output function to be approximated would be the following:

\begin{equation} \hat{y}(w,x) = \frac{1}{1+e^{ w_0 + w_1 \cdot x_1 + \ldots + w_n \cdot
x_n}} \end{equation}

The advantage of this approach over linear regression is that it creates a smoother
separation between the values of the output variable (classes):

2.2.2 Implementation in scikit-learn and the main parameters

Below we will walk you through the steps required to build a logistic regression classifier
in scikit-learn. Note that it follows exactly the same scheme as the one seen above for
LinearRegressor; however, in this case, because it is a classifier, the output is in the set
{0, 1}.

Several different parameters that can be configured for this classifier, although we
recommend keeping the default values. In any case, the most important parameters are
listed below:

• The penalty value specifies the rule used in the penalty function to adjust the
coefficients; choose from {l1, l2, elasticnet, or none}, with the default being l2.

• C is a real value (float) used change the amount of forced overlearning, with
higher values implying a better training fit, and with the default being 1.0.

• class_weight is used to alter the weighting given to under-represented class
samples; choose between {balanced or none}, with the default being none.

Although not explicitly stated, many of the classifiers implemented in scikit-learn use the
class_weight parameter by default so as to address imbalanced classification problems.

In the following code block, we will repeat the same steps performed for linear
regression but implementing the logistic regressor classifier. Note that the same
group of variables (genes) are highlighted as the main variables in both cases. Finally, the
accuracy of this second model is higher, indicating the preference for this sort of solution.

import warnings
warnings.filterwarnings("ignore") #ignore this line

lrm = linear_model.LogisticRegression()

lrm.fit(X_train, y_train.to_numpy().ravel())
print("Coef. independent:",lrm.intercept_)
print("Coef. per variable:",lrm.coef_)
print()

importance = np.abs(lrm.coef_[0]) #transform to a one-dimensional list
importance_norm = normalize(importance[:,np.newaxis], axis=0).ravel()
#5 most important ones are represented by absolute value
(pd.Series(importance,
index=X_train.columns).nlargest(5).plot(kind='barh'))
plt.title("Logistic Regressor Importance Ratio of the Genetic Panel")
plt.show()
print()

y_pred = lrm.predict(X_test)

print("Original predicted values (top 10):")
print(y_pred[:10])
print()

acc_score = accuracy_score(y_test, y_pred)
print("Logistic Regression hit on test partition:", acc_score)

Coef. independent: [2.60557275]
Coef. per variable: [[-0.03110064 0.16743501 -0.58385565 -0.041624
0.40949269 -0.3470138
 -0.25777581 -0.28951875 -0.41787594 -0.31815611 -0.42031786 -
0.21280413
 0.12050644 -0.59472177 -0.05220371 0.14025638 -0.54429615 -
0.0470958
 0.30750881 -0.07255672 0.28527669 0.24941566 -0.3904066
0.19336178
 0.12320901 0.10120174 -0.14906486 0.37664058 -0.02005865
0.37683877
 0.33847116 -0.16205854 0.73224376 0.15976062 -0.2941222
0.07575672
 -0.24837593 0.26439539 0.54176416 0.77176051 -0.20439398 -
0.34556627
 0.5973885 0.96986976 0.09615201 -0.21446275 -0.93445767
0.03523568
 -0.31621746 0.25407509]]

Original predicted values (top 10):
['MITF-low' 'immune' 'MITF-low' 'MITF-low' 'immune' 'MITF-low' 'MITF-
low'
 'MITF-low' 'immune' 'immune']

Logistic Regression hit on test partition: 0.7380952380952381

In addition to the classical measure of accuracy, other measures can be used such as the F1
metric that compensates between the hits of each class, or the AUC metric based on the
balance of true and false positives for each probability threshold value of the classifier.

Regardless, the graphical representation is immediate using a scikit-learn estimator or
classifier. In the following code snippet we will review various ways of obtaining these
aforementioned metrics.

import matplotlib.pyplot as plt
from sklearn import metrics

metrics.plot_confusion_matrix(lrm, X_test, y_test,cmap='binary')
plt.title("Confusion matrix obtained for Logistic Regressor
classifier")
plt.show()

print(metrics.classification_report(y_test,y_pred))

f1 = metrics.f1_score(y_test,y_pred,pos_label="immune")
print("The F1 measure for classifier %s is %.4f"%

(lrm.__class__.__name__,f1))

y_probs = lrm.predict_proba(X_test)
auc = metrics.roc_auc_score(y_test, y_probs[:,1])
print("The AUC measure for classifier %s is %.4f"%
(lrm.__class__.__name__,auc))
metrics.plot_roc_curve(lrm, X_test, y_test)
plt.title("ROC curve obtained for the Logistic Regressor classifier")
plt.show()

 precision recall f1-score support

 MITF-low 0.73 0.80 0.76 44
 immune 0.75 0.68 0.71 40

 accuracy 0.74 84
 macro avg 0.74 0.74 0.74 84
weighted avg 0.74 0.74 0.74 84

The F1 measure for classifier LogisticRegression is 0.7105
The AUC measure for classifier LogisticRegression is 0.7642

In the following section, the decision boundary obtained by each classifier used will be
plotted. The most important thing about the representation of the decision or discriminant
function is that it facilitates the understanding of how the different classification paradigms
actually work.

It is highly likely that the accuracy attained will not exactly match the accuracy achieved
with respect to the original data set, but this is understandable since we have transformed
the problem.

#A special library to 2D plot is imported
from mlxtend.plotting import plot_decision_regions

#We create and train the classifier with the 2D data
clf = linear_model.LogisticRegression()
clf.fit(X_2D_train, y_2D_train)
score = clf.score(X_2D_test,y_2D_test)

#Parameters that will be used to visualize the figure
scatter_kwargs = {'s': 120, 'edgecolor': None, 'alpha': 0.7}
contourf_kwargs = {'alpha': 0.2}
scatter_highlight_kwargs = {'s': 120, 'label': 'Test data', 'alpha':
0.7}

fig = plt.figure(figsize=(12,9))
fig = plot_decision_regions(clf=clf,X=X_2D,y=y_int.to_numpy().ravel(),
 X_highlight=X_2D_test, legend=2,
 scatter_kwargs=scatter_kwargs,

 contourf_kwargs=contourf_kwargs,

scatter_highlight_kwargs=scatter_highlight_kwargs)
plt.title('Frontera de decisión generada por el clasificador
'+clf.__class__.__name__)
plt.text(4 - .3, -3 + .3, ('Acc tst: %.2f' % score).lstrip('0'),
size=15, horizontalalignment='right')
handles, labels = fig.get_legend_handles_labels()
fig.legend(handles, ['Clase MITF-low', 'Clase immune', 'Instancias
test'],
 framealpha=0.3, scatterpoints=1)

plt.show()

2.3 Advantages and disadvantages of linear models

Linear models have several advantages that are of great interest for practical use:

• They are very efficient and are therefore very appropriate for an initial
approximation of the problem.

• An additional advantage is that they are highly interpretable, in the sense that they
allow the weight or importance of the variables associated with the classification to
be determined. Thus, we can check whether the input variables contain a biological
meaning appropriate to the case study.

• Finally, they tend to work well even in problems with a high number of variables
because both these models estimate the coefficients based on the independence of
the input variables.

Therefore, if these input variables are correlated, we must remember that the estimation is
highly sensitive to random errors in the output variable, producing a large variance. Hence,
if the data for the problem are relatively complex, it is advisable to use more sophisticated
non-linear techniques.

3. CLASSIFICATION WITH THE NEAREST NEIGHBOUR (KNN)

In the previous capsule of this module, the k-nearest neighbors (KNN) model classification
algorithm was briefly introduced. This was because of its simplicity and its widespread
application in many data science and machine learning problems.

In this section, we will describe in more detail how the KNN algorithm works and its use by
implementing Python in scikit-learn. Finally, we will discuss the advantages and
disadvantages of this classification technique.

3.1 How the k-nearest neighbors algorithm works.

The KNN algorithm falls under the heading of what is known as "lazy learning", in that it
does not involve a training phase as such. Instead, ‘instance-based learning’ is performed
for KNN models, making them a store for instances of the training data. The premise for
classifying new instances is based on analyzing the class for similar instances. In simpler
terms and to quote a popular saying, we could say that if it walks like a duck, and quacks
like a duck, it probably is a duck!

The key, therefore, lies in what is meant by similarity between instances. To specify this, we
must define what is known as a distance function, which will assign an output value
between instances according to how similar they are. Because instances are represented in

the form of numerical variables, the most common of these functions is the Euclidean
distance, which is described by the following equation:

\begin{equation} d_e(e_1, e_2) = \sqrt{\sum_{i=1}^{n}{(e_1^i - e_2^i)^2}} \end{equation}

Note that in the two-dimensional case, it would coincide with the formula for finding the
length of the hypotenuse in a right triangle, with the vertices of the legs being the points
over which we want to find their distance.

To determine the output class of a new instance in the KNN algorithm, the distance value
must be calculated for all available instances in the training set. The most frequent class
among the KNN is then assigned to the new instance and k is a critical parameter in the use
of this classification algorithm. Of note, k should always be an odd value to avoid possible
ties. However, the optimal value of k is strongly data-dependent: in general, a larger value
suppresses the effects of possible noise but makes the classification boundaries less clear.

3.2 Implementation of the k-nearest-neighbors model and its main usage parameters in
scikit-learn

As previously mentioned, the implementation of the KNN model in scikit-learn is found in
the KNeighborsClassifier method and the most important parameters that can be set
for it are as follows:

• n_neighbors: an integer value (int) to determine the neighborhood environment,
with the default being 5.

• weights: choose between {uniform or distance} depending on whether you want
the output to be a simple vote or for the KNN output label to be more important,
respectively, with the default being uniform.

• metric: choose from {euclidean, manhattan, chebyshev, minkowski, or
mahalanobis} to determine the distance calculation, with the default being
minkowski.

The following example shows how to implement KNN, when setting k (the n_neighbors
parameter) to 3 and leaving the default settings for the other parameters. The other quality
metrics can be obtained as previously described

from sklearn.neighbors import KNeighborsClassifier # load function
from library

Example of using kNN
knn = KNeighborsClassifier(n_neighbors=3, metric='euclidean') #
instantiate the model
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)

acc_score = accuracy_score(y_test, y_pred)
print("KNN accuracy on test partition:", acc_score)

KNN accuracy on test partition: 0.6785714285714286

The way to obtain other quality metrics is repeated:

metrics.plot_confusion_matrix(knn, X_test, y_test,cmap='binary')
plt.title("Confusion matrix obtained for k Nearest Neighbor
classifier")
plt.show()

print(metrics.classification_report(y_test,y_pred))

f1 = metrics.f1_score(y_test,y_pred,pos_label="immune")
print("The F1 measure for classifier %s is %.4f"%
(knn.__class__.__name__,f1))

y_probs = knn.predict_proba(X_test)
auc = metrics.roc_auc_score(y_test, y_probs[:,1])
print("The AUC measure for classifier %s is %.4f"%
(knn.__class__.__name__,auc))
metrics.plot_roc_curve(knn, X_test, y_test)
plt.title("ROC curve obtained for classifier k Nearest Neighbor")
plt.show()

 precision recall f1-score support

 MITF-low 0.62 0.98 0.76 44
 immune 0.93 0.35 0.51 40

 accuracy 0.68 84
 macro avg 0.78 0.66 0.64 84
weighted avg 0.77 0.68 0.64 84

The F1 measure for classifier KNeighborsClassifier is 0.5091
The AUC measure for classifier KNeighborsClassifier is 0.7750

Again, we can check how the classification boundaries are defined in the case of this
particular algorithm. Note the non-linear type of discriminant function (i.e., it is no longer a
‘straight line’) which is often also locally (very ‘closed’) in specific areas of the data space.
Unlike previous linear models, the operation of KNN is based on the environment of the
examples.

A considerable amount of time may be required to perform the computation required to
obtain the graphical representation of the model in this example, given the efficiency
characteristics of this algorithm

#We instantiate and train the classifier with the 2D data
clf = KNeighborsClassifier()
clf.fit(X_2D_train, y_2D_train)
score = clf.score(X_2D_test,y_2D_test)

fig = plt.figure(figsize=(12,9))
fig = plot_decision_regions(clf=clf,X=X_2D,y=y_int.to_numpy().ravel(),
 X_highlight=X_2D_test, legend=2,
 scatter_kwargs=scatter_kwargs,
 contourf_kwargs=contourf_kwargs,

scatter_highlight_kwargs=scatter_highlight_kwargs)
plt.title('Decision borderline generated by the classifier
'+clf.__class__.__name__)
plt.text(4 - .3, -3 + .3, ('Acc tst: %.2f' % score).lstrip('0'),
size=15, horizontalalignment='right')
handles, labels = fig.get_legend_handles_labels()

fig.legend(handles, ['MITF-low class', 'Immune class', 'Test
instances'],
 framealpha=0.3, scatterpoints=1)

plt.show()

3.3 Advantages and disadvantages of the k-nearest-neighbors algorithm

Finally, we will analyze the advantages and disadvantages of this classification algorithm
that we should consider in the case study examined in this module

• Advantages:
– The KNN model works well when using a moderate k value (k > 1) as the

parameter, even with noisy instances whose value may be erroneous or
anomalous. This implies that anomalous data instances should not affect the
output of the classifier because they will be compensated by the remaining
data that is correct.

– The algorithm is also fairly efficient because it uses linear local functions to
approximate the objective function. The frontier is non-linear and depends
on the type of data sampling performed.

– The model is valid for both classification and regression.
– The KNN algorithm can easily be used with prototypes meaning that if,

instead of using the whole training set, we only select the most important

instances, the algorithm will run much faster without losing its predictive
capability.

– It is available in most software packages.
• Disadvantages:

– The KNN model is very memory inefficient because the entire data set must
be stored in the system.

– The computational complexity is O(d⋅n2) while the distance complexity is
O(d). Therefore, the higher the number of instances, the slower the
prediction.

– The distance between neighbors in the KNN model may be dominated by
irrelevant input variables. If the variables used are not correctly selected,
they can strongly affect the prediction.

– In the event of a high dimensionality, the distance converges to the same
value, meaning that when there are a high number of variables, the distance
or similarity tends to be identical for any instance upon which it is calculated.

4. DECISION TREES

Decision trees (DTs) are a supervised learning technique used both for classification and
regression. In this section, first we present the properties of decision tree-based
techniques. Next, we describe the steps required to use the implementation available in the
scikit-learn library. Finally, we list several general advantages and disadvantages
associated with DTs .

4.1 Introduction to decision trees in classification

DT models are based on simple `IF–THEN–ELSE+ format decision rules (or conditions)
which are usually dichotomous (in groups of two). There is a hierarchical order in the
application of the rules, which are chained until the final decision is made. Therefore, the
model is usually structured in the form of a tree. Its elements are as follows:

• Each ‘leaf’ is a category (class) corresponding to the output.
• Each ‘node’ (internal part of the tree) specifies a simple test to be performed, in

other words, a rule on a single tuple (a finite ordered list of <variable, value>
elements).

• The ‘offspring’ of each node are the possible results of the node’s test.

During the learning process, each node is expected to perform a disjointed division over
the number of instances of each class. This division criterion is calculated using two
possible measures: information gain (entropy) and impurity (Gini index). In short, the
combination <variable, value> that minimizes or maximizes the previous values (“entropy”
or “gini”, respectively) is sought out. This implies that all the instances of a class are
‘grouped’ into the IF part of the rule, while the rest will go to the ELSE part.

According to the above, the most important input variables will appear at the top (root) of
the tree. In the example shown in the image above this would be the color variable. This is
because these variables are initially chosen as the most appropriate ones to separate
between the classes of the problem. The training process is normally conducted
recursively: starting by identifying the root and continuing until it reaches each of the
leaves of the tree. We can determine that a leaf has been reached (and therefore no further
splitting proceeds) based on two possible criteria:

• A node purity threshold is reached, as marked by the minimum or maximum value
of the splitting measure (entropy or gain).

• The tree has reached a maximum depth limit set by the user. This depth is measured
by the number of nodes from root to leaf.

Normally, the deeper the tree, the more complex the decision rules and the tighter the
model. However, care must be taken as this type of tuning can lead to overlearning.

4.2 Implementation in scikit-learn and the main use parameters

The DecisionTreeClassifier for creating decision tress is included in scikit-learn; its
use is identical to the other classifiers implemented in this library and so we will focus on
its main additional parameters:

• criterion: to determine the function that measures the quality of a split we must
choose between {gini or entropy}, with the default being gini.

• max_depth: is an integer (int) that determines the maximum depth of the tree; if it
is not specified, the nodes are expanded until all leaves are pure or until they
contain less than min_samples_split instances.

• min_samples_split: is an integer (int) indicating the minimum number of
instances needed to split an internal node, with the default being 2.

from sklearn import tree

dt = tree.DecisionTreeClassifier()
dt.fit(X_train, y_train)

y_pred = dt.predict(X_test)

acc_score = accuracy_score(y_test, y_pred)
print("DT accuracy on the test partition:", acc_score)

DT accuracy on the test partition: 0.75

metrics.plot_confusion_matrix(dt, X_test, y_test,cmap='binary')
plt.title("Confusion matrix obtained for Decision Tree classifier")
plt.show()

print(metrics.classification_report(y_test,y_pred))

f1 = metrics.f1_score(y_test,y_pred,pos_label='immune')
print("The F1 metric for classifier %s is %.4f"%
(dt.__class__.__name__,f1))

y_probs = dt.predict_proba(X_test)
auc = metrics.roc_auc_score(y_test, y_probs[:,1])
print("The AUC measure for classifier %s is %.4f"%
(dt.__class__.__name__,auc))
metrics.plot_roc_curve(dt, X_test, y_test)
plt.title("ROC curve obtained for the Decision Tree classifier")
plt.show()

 precision recall f1-score support

 MITF-low 0.77 0.75 0.76 44
 immune 0.73 0.75 0.74 40

 accuracy 0.75 84
 macro avg 0.75 0.75 0.75 84
weighted avg 0.75 0.75 0.75 84

The F1 metric for classifier DecisionTreeClassifier is 0.7407
The AUC measure for classifier DecisionTreeClassifier is 0.7500

One of the great advantages of decision trees is their good interpretability. Because simple
rules are used in the tree format, it is very easy to determine its main components and the
most useful variables representing the case. We can even directly explain each output from
the classifier because it will take a single path from the root to the leaf node.

In the next block, we will visualize the tree generated, indicating the name of the input
variables and classes. The colors (in this case, blue and orange) indicate most of output
classes at each node, where the stronger the color, the better the separation of classes

#Libraries needed for better visualisation
from graphviz import Source

#the tree is plotted:
tree_graph = tree.export_graphviz(dt, out_file=None,
 feature_names=X.columns,

class_names=pd.unique(y[y.columns[0]]),
 filled = True)
graph = Source(tree_graph)
graph

DNASE2B <= -0.87
gini = 0.5

samples = 252
value = [124, 128]
class = MITF-low

PRODH <= 0.42
gini = 0.263

samples = 77
value = [12, 65]

class = MITF-low

True

CXADR <= 1.763
gini = 0.461

samples = 175
value = [112, 63]
class = immune

False

RXRG <= -8.437
gini = 0.123

samples = 61
value = [4, 57]

class = MITF-low

PCDHB2 <= 0.022
gini = 0.5

samples = 16
value = [8, 8]

class = immune

SYT1 <= 6.626
gini = 0.444
samples = 3
value = [2, 1]

class = immune

LEPREL1 <= 5.21
gini = 0.067

samples = 58
value = [2, 56]

class = MITF-low

gini = 0.0
samples = 2
value = [2, 0]

class = immune

gini = 0.0
samples = 1
value = [0, 1]

class = MITF-low

LHFPL3 <= -3.414
gini = 0.034

samples = 57
value = [1, 56]

class = MITF-low

gini = 0.0
samples = 1
value = [1, 0]

class = immune

COL2A1 <= -1.441
gini = 0.444
samples = 3
value = [1, 2]

class = MITF-low

gini = 0.0
samples = 54
value = [0, 54]

class = MITF-low

gini = 0.0
samples = 1
value = [1, 0]

class = immune

gini = 0.0
samples = 2
value = [0, 2]

class = MITF-low

gini = 0.0
samples = 6
value = [0, 6]

class = MITF-low

C3 <= 1.685
gini = 0.32

samples = 10
value = [8, 2]

class = immune

gini = 0.0
samples = 8
value = [8, 0]

class = immune

gini = 0.0
samples = 2
value = [0, 2]

class = MITF-low

LEPREL1 <= -0.576
gini = 0.398

samples = 146
value = [106, 40]
class = immune

PRODH <= 2.583
gini = 0.328

samples = 29
value = [6, 23]

class = MITF-low

SLC24A4 <= 0.814
gini = 0.493

samples = 43
value = [19, 24]

class = MITF-low

AK5 <= 3.911
gini = 0.262

samples = 103
value = [87, 16]
class = immune

IRX6 <= 0.637
gini = 0.375

samples = 28
value = [7, 21]

class = MITF-low

SLC7A11 <= 2.298
gini = 0.32

samples = 15
value = [12, 3]

class = immune

gini = 0.0
samples = 17
value = [0, 17]

class = MITF-low

CXADR <= 0.013
gini = 0.463

samples = 11
value = [7, 4]

class = immune

gini = 0.0
samples = 4
value = [0, 4]

class = MITF-low

gini = 0.0
samples = 7
value = [7, 0]

class = immune

gini = 0.0
samples = 12
value = [12, 0]

class = immune

gini = 0.0
samples = 3
value = [0, 3]

class = MITF-low

NTS <= 5.697
gini = 0.199

samples = 98
value = [87, 11]
class = immune

gini = 0.0
samples = 5
value = [0, 5]

class = MITF-low

PRF1 <= 3.369
gini = 0.139

samples = 93
value = [86, 7]

class = immune

PRODH <= 1.381
gini = 0.32

samples = 5
value = [1, 4]

class = MITF-low

GNAL <= -3.624
gini = 0.085

samples = 90
value = [86, 4]

class = immune

gini = 0.0
samples = 3
value = [0, 3]

class = MITF-low

gini = 0.0
samples = 2
value = [0, 2]

class = MITF-low

DNASE2B <= 5.393
gini = 0.044

samples = 88
value = [86, 2]

class = immune

gini = 0.0
samples = 85
value = [85, 0]

class = immune

LHFPL3 <= 0.763
gini = 0.444
samples = 3
value = [1, 2]

class = MITF-low

gini = 0.0
samples = 1
value = [1, 0]

class = immune

gini = 0.0
samples = 2
value = [0, 2]

class = MITF-low

gini = 0.0
samples = 4
value = [0, 4]

class = MITF-low

gini = 0.0
samples = 1
value = [1, 0]

class = immune

SOX9 <= 1.141
gini = 0.204

samples = 26
value = [3, 23]

class = MITF-low

gini = 0.0
samples = 3
value = [3, 0]

class = immune

gini = 0.0
samples = 22
value = [0, 22]

class = MITF-low

PCDHB2 <= -1.387
gini = 0.375
samples = 4
value = [3, 1]

class = immune

gini = 0.0
samples = 3
value = [3, 0]

class = immune

gini = 0.0
samples = 1
value = [0, 1]

class = MITF-low

As previously shown with a DT and the LogisticRegressor classifier, it is easy to check
which variables are the most important in the model. These are usually the ones closest to
the root node; the DecisionTreeClassifier class property allows us to access this
information. As shown, the most important variable appears at the root of the tree.

This is not by chance but rather, because this one was first selected to divide the classes.
Because the mode of learning of this model is different from that of the linear classification
paradigm, the ranking of the most important variables also changes.

#First, the importance ranking values are captured.
importance = dt.feature_importances_
#The 5 most important ones are represented
(pd.Series(importance,
index=X_train.columns).nlargest(5).plot(kind='barh'))
plt.show()

Finally, we proceed to represent the type of decision boundary obtained by the
classification paradigm based on DTs. This time, we are shown a division by rectangular
blocks according to how the examples are distributed in each node of the tree.

#We create and train the classifier with 2D data.
clf = tree.DecisionTreeClassifier()
clf.fit(X_2D_train, y_2D_train)
score = clf.score(X_2D_test,y_2D_test)

fig = plt.figure(figsize=(12,9))
fig = plot_decision_regions(clf=clf,X=X_2D,y=y_int.to_numpy().ravel(),
 X_highlight=X_2D_test, legend=2,
 scatter_kwargs=scatter_kwargs,
 contourf_kwargs=contourf_kwargs,

scatter_highlight_kwargs=scatter_highlight_kwargs)
plt.title('Decision borderline generated by the classifier
'+clf.__class__.__name__)
plt.text(4 - .3, -3 + .3, ('Acc tst: %.2f' % score).lstrip('0'),
size=15, horizontalalignment='right')
handles, labels = fig.get_legend_handles_labels()
fig.legend(handles, ['MITF-low class', 'Immune class', 'Test
instances'],
 framealpha=0.3, scatterpoints=1)

plt.show()

4.3 Advantages and disadvantages of decision trees

Decision trees are one of the most powerful tools used in machine learning. Among their
main advantages, we would like to highlight the following:

• They are efficient and easy to use because they do not contain an excessive number
of parameters, and these are simple to understand and configure, allowing their
improved adaptation to the problem. In addition, its execution is very fast, so it
allows continuous testing.

• The rules DTs generate are easy to interpret; one of their main virtues is that they
are user-understandable systems because they use cognition rules like those that
would be applied by an expert.

• DTs can be scaled better than other types of techniques and so increasing the
number of instances or variables does not excessively affect the computational
performance.

• These models can handle potentially noisy data by using an internal mechanism
known as ‘pruning’ to heuristically reduce the depth of the tree and allow better
generalization.

While we must certainly bear in mind the many positive aspects of DTs, some details that
may affect their use should also be considered, namely:

• DTs cannot directly handle numerical input variables and so, to calculate entropy or
Gini index functions, we must first turn the variables into discrete values. While this
process is transparent to users, it should be taken into account.

• This type of model attempts to divide the variable domain into rectangular regions
—a type of decision boundary that may not be suitable for some linear output
distributions.

• DTs have difficulty dealing with missing data and so these values must be pre-
imputed.

• If a very high depth factor is applied, it will be more difficult for DTs to correctly
generalize over test instances, leading to problems with overlearning. Correlations
between variables may also be detected because each decision node is obtained
independently without considering the rest.

BIBLIOGRAPHICAL REFERENCES
• Han, J., Kamber, M., Pei, J. (2011). Data Mining: Concepts and Techniques. San

Francisco, CA, USA: Morgan Kaufmann Publishers. ISBN: 0123814790,
9780123814791

• Witten, I. H., Frank, E., Hall, M. A., Pal, C. J. (2017). Data mining: practical machine
learning tools and techniques. Amsterdam; London: Morgan Kaufmann. ISBN:
9780128042915 0128042915

• Scikit-Learn: Supervised Learning
https://scikit-learn.org/stable/supervised_learning.html (visitado el 25 de Junio de
2020).

• Open Machine Learning Course: Topic 3. Classification, Decision Trees and k Nearest
Neighbors https://mlcourse.ai/articles/topic3-dt-knn/ (visitado el 25 de Junio de
2020).

Additional references

• Alpaydin, E. (2016). Machine Learning: The New AI. MIT Press. ISBN:
9780262529518

• Towards Data Science: The Complete Guide to Classification in Python
https://towardsdatascience.com/the-complete-guide-to-classification-in-python-
b0e34c92e455 (visitado el 25 de Junio de 2020).

• Towards Data Science: Python For Data Science — A Guide To Classification
Machine Learning https://towardsdatascience.com/python-for-data-science-a-
guide-to-classification-machine-learning-9ff51d237842 (visitado el 25 de Junio de
2020).

https://towardsdatascience.com/python-for-data-science-a-guide-to-classification-machine-learning-9ff51d237842
https://towardsdatascience.com/python-for-data-science-a-guide-to-classification-machine-learning-9ff51d237842
https://towardsdatascience.com/the-complete-guide-to-classification-in-python-b0e34c92e455
https://towardsdatascience.com/the-complete-guide-to-classification-in-python-b0e34c92e455
https://mlcourse.ai/articles/topic3-dt-knn/
https://scikit-learn.org/stable/supervised_learning.html

	Module 5.2 Standard classification methods.
	Brief Instructions
	Reminder: Introduction to NoteBook

	INDEX
	1. INTRODUCTION
	1.1 Classification paradigms
	1.2 Loading the problem data

	2. SIMPLE MODELS: LINEAR AND LOGISTIC REGRESSION
	2.1 Linear regression model
	2.1.1. Introduction to the linear model
	2.1.2 Implementation in Scikit-Learn

	2.2 Logistic regression model
	2.2.1 Introduction to logistic regression
	2.2.2 Implementation in scikit-learn and the main parameters

	2.3 Advantages and disadvantages of linear models

	3. CLASSIFICATION WITH THE NEAREST NEIGHBOUR (KNN)
	3.1 How the k-nearest neighbors algorithm works.
	3.2 Implementation of the k-nearest-neighbors model and its main usage parameters in scikit-learn
	3.3 Advantages and disadvantages of the k-nearest-neighbors algorithm

	4. DECISION TREES
	4.1 Introduction to decision trees in classification
	4.2 Implementation in scikit-learn and the main use parameters
	4.3 Advantages and disadvantages of decision trees

	BIBLIOGRAPHICAL REFERENCES
	Additional references

