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Reminder: Introduction to NoteBook.

In this NoteBook you will be guided, step-by-step, through loading a dataset to the descriptive analysis of its 
contents. The Jupyter NoteBook (Python) is an approach that combines text blocks (like this one) and code 
blocks or cells. The great advantage of this system is its interactivity because cells can be executed to 
directly check the results they contain.

Very important: the order of the instructions is fundamental and so each cell in this NoteBook must be 
executed sequentially. If any are omitted, the program may throw an error and so if there is any doubt, you 
will have to start from the beginning again.

First, it is very important to select “Open in draft mode” (draft mode) at the top left at the beginning. 
Otherwise, for security reasons, you will not be allowed to execute any code blocks. When the first of the 
blocks is executed, the following message will appear: “Warning: This NoteBook was not created by Google”. 
Don’t worry, you can trust the contents of the NoteBook and click on “Run anyway”.

Let’s start!

Click on the “play” button on the left side of each code cell. Remember that lines beginning with a hashtag (#) 
are comments and do not affect the execution of the script. You can also click on each cell and press
“Ctrl+enter” (“Cmd+Enter” on Mac). Each time you execute a block, you will see the output just below it. The 
information is usually always the last statement, along with any print() commands present in the code.
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1. LINEAR REGRESSION 
The first regression method we will address in this module is linear regression, which is considered as a
simple approach in the field of supervised learning. In linear regression, it is assumed that dependence of
the output variable  (in our case study of childhood obesity represented by the variable HOMA-IR) on the
input variables  (all other variables in our problem) is linear. Although it may seem too
simplistic, linear regression is extremely useful both conceptually and in practice. In this capsule we will see
how to use it to study a data set and draw useful conclusions about the behaviour of the data, without
prejudice to the use of other (supposedly or theoretically more powerful) techniques to obtain better-fitting
models. First of all, we will distinguish between simple or multiple linear regression.
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1.1 Simple linear regression basics
In a simple linear regression, using a single input variable  we assume the following model,

where  and  are two unknown constants that represent the independent term and the slope of a linear
function (a straight line) respectively. These constants are known as coefficients or parameters. In this
context, $$epsilon$ refers to the error term of the estimate.

Given an estimate of  and  for the model coefficients, we can predict future values of the output
variable  using,

where  represents a prediction of  based on . The hat symbol denotes that we are referring to
estimated values (rather than actual or observed values). The values of  and  are obtained through the
least squares technique, which obtains the coefficients that minimise the error made for each available
instance in a training data set. In other words, with least squares, the optimal values of the coefficients that
minimise the value of RMSE are always obtained.
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1.2 Basic concepts of multiple linear regression
In the case of multiple linear regression, using more than one input variable  we assume the following
model,

interpreting each coefficient  as the average effect on  of a unit increase in , keeping the rest of
the input variables fixed. The ideal case is when the input variables  are not correlated with each other
(no collinearity), as this would imply certain interpretation problems. However, if the learning process is
carried out step by step, taking into account the statistical values obtained on these coefficients, the variables
that are correlated with each other are eventually eliminated. In multiple linear regression, the estimation of
the coefficients is also performed using the least squares technique, minimising the error of the predictions
on the training data set.
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1.3 Evaluation of the goodness of fit of the estimation coefficient
This technique generates certain statistical values that will allow us to answer questions such as whether
there is at least one input variable ( ) that has a linear relationship with the output variable ( ). If this is the
case, which ones? Here we will refer to two statistical values:

The F-statistic: This is a value obtained for the regression model as a whole, rather than for each of the
input variables. The extent that its value departs from 1 (either upwards or downwards) indicates that at
least one input variable has a linear relationship with the output variable. If this value is close to 1, we
can directly discard the modelled linear regression since there will be no input variable ( ) with a linear
relationship with the output ( ). This parameter is particularly important in problems with many input
variables which may include variables that initially appear to be relevant but are eventually found not to
be. Thus, the F statistic is the first parameter we must study when performing a regression. After that,
we only continue with the process if its value is not close to 1.
The p-values of the t-statistics: This value is a parameter associated with each of the coefficients,
although a global p-value is also obtained for the complete regression model. The p-values will indicate
whether the coefficient  of each input variable ( ) is relevant or if, on the contrary there is a high
probability that it could actually be zero (  implies that the variable in question has no linear
relationship with the output variable and therefore, should be eliminated from the model). This happens
when the p-value for the coefficient exceeds  or , indicating that the variable might be irrelevant (

).
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1.4 Assessing the goodness of fit of the model
As mentioned in the previous capsule, the value of the Coefficient of Determination  can fall between 0
and 1, with a value of 1 indicating a perfect model fit (zero error) and 0 indicating a fit with the worst possible
error. To compare several linear regression models with each other, the value of  obtained in each of
them is usually considered. However, because the number of coefficients  of the different models must be
taken into account, in order to compare models with different numbers of input variables, actually, we would
have to look at the so-called adjusted $ (which already takes them into account during its calculation).

If we want to compare a linear regression model with models obtained by other regression techniques
(e.g., KNN, neural networks, M5, ...) we must use the value of RMSE. Let us remember that, on the other
hand,  is a relative parameter and that not all techniques allow its calculation.
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1.5 Choosing the relevant input variables
The usefulness of linear regression depends very much on the variables chosen to learn its coefficients. In
principle, these must be manually selected because not all possible combinations of variables can be
examined. For example, for a problem with 40 input variables, , we would have  combinations of
different models (over a trillion combinations). To decide which variables should be considered in the
final model, there are two approaches** commonly used:

1. Forward selection: This procedure consists of starting by building the null model which contains the
independent term but no input variables, and then running simple linear regressions in parallel between
the output/dependent variable  and each of the input variables . We will then add the input variable
that results in the lowest error among all models tested (the one with the highest adjusted ) to
the null model. The procedure is then continued until some stopping rule is satisfied. For example,
adding any of the remaining variables gives a p-value above some threshold for that variable (>
or  for example). IMPORTANT!!!: the variables must be added one at a time and NEVER several
at once. Each time a variable is added, it contributes to explaining a part of the data and, so the p-values
of the other variables may change and no longer be relevant as there is no longer a need to explain that
part of the data.

2. Backward selection: Start with all the variables in the model and then eliminate the input variable with
the highest p-value (i.e., the least statistically significant variable), and fit the new model with the
remaining  variables. In the next round, we again remove the variable with the highest p-value,
and so on, until a stopping rule is reached. For example, we can stop when all the input variables that
make up the model have a significant value (e.g., a p-value below  or ). IMPORTANT!!!: the
variables must be eliminated one at a time and NEVER several at once. Each time a variable is
eliminated, we make it easier for one of the remaining variables to adequately explain part of the data so
that they can go from being a variable of little relevance (or even an annoying variable with a very high
p-value) to an essential one. Therefore, these variables would be lost if we were to remove several at
once. If this process is followed strictly, it will solve most of the correlation problems (collinearity)
between the input variables.

It is important to consider that the independent term of the regression does not come into play in either of
these two approaches, and so it will never be removed from the model.

There are other possibilities besides these two approaches, such as calculating the correlations of all the
input variables with the output variable, and keeping a small set of the best ones; or, for example, applying
one of the existing variable selection algorithms. Unfortunately, none of these ensures that the best
existing combination is reached.

In this course, we recommend using backward selection when the number of variables is not too
large, and forward selection when there are many variables (automating the choice of the variable to be
included in each step).

Using either of these two approaches will allow us to do exactly what we set out to do with regression: study
a data set and be able to draw useful conclusions about the behaviour of the data, even if other, more
versatile types of techniques are eventually applied. Thus, in our dataset on obesity and insulin resistance
in children, we will apply the backward selection approach.

p = 40 2p

Y Xj

R2

0.1
0.15

(p − 1)

0.1 0.15



1.6 Extensions of the linear model.Eliminating the additive assumption:
interactions and non-linearity.
To deal with the non-linearity of the data existing in most real-life data sets, new interaction terms
(variables with positive synergy that enhance each other) or non-linearity (variables with quadratic,
logarithmic growth, etc.) can be considered. In order to study these behaviours in a linear regression we
must use one of two different terms, as outlined below.

Interactions (terms whose behavior is not additive): these interaction terms are presented in regression
models as   , and represent how the change in two or more variables jointly causes changes in
the output variable  greater than they would do separately. For example: it is known that investing
5000 euros of advertising in  and another 5000 in  leads to much higher sales of a
product than if 10000 euros are invested directly in either of the two media unilaterally. Including a new
multiplicative term of the type  in the regression model would allow us to adequately
explain such a non-linear phenomenon.
Other non-linear terms: Often the relationship between an input variable and the output variable is not
linear but quadratic, cubic, logarithmic, exponential, etc. Including a term that matches this type of
relationship can help to adequately explain these non-linear phenomena.

However, the principle of hierarchy must be respected in every case. That is, if a new variable  is
included for  and its p-value indicates that this cubic term is relevant, then  and  must also be
included, even if their p-values are not significant; not including them would represent a serious mistake. The
same rule follows in the case of interactions: if a new variable  is included and retained
because the three variables complement each other (meaning that the p-value for that interaction term is
significant), then , , , , , and  must also be included (irrespective
of their p-values).
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2. INSTALLATION OF R AND LIBRARIES , AND READING THE
CHILDHOOD OBESITY DATA 
As explained in the previous capsule, we must run the following three code cells before starting the linear
regression algorithm.



In [1]:

# Estimated execution time: approx. 20 seconds. 

### Installing R on Google Colab notebooks ### 
!apt-get update
!apt-get install r-base
!pip install rpy2==3.5.1
%load_ext rpy2.ipython
print ("Instalación de R en Google Colab terminada")



Get:1 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 k
B] 
Ign:2 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/
x86_64  InRelease 
Get:3 https://cloud.r-project.org/bin/linux/ubuntu bionic-cran40/ InReleas
e [3,626 B] 
Hit:4 http://archive.ubuntu.com/ubuntu bionic InRelease 
Get:5 http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu bionic InReleas
e [15.9 kB] 
Ign:6 https://developer.download.nvidia.com/compute/machine-learning/repo
s/ubuntu1804/x86_64  InRelease 
Get:7 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/
x86_64  Release [696 B] 
Hit:8 https://developer.download.nvidia.com/compute/machine-learning/repo
s/ubuntu1804/x86_64  Release 
Get:9 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/
x86_64  Release.gpg [836 B] 
Get:10 http://archive.ubuntu.com/ubuntu bionic-updates InRelease [88.7 kB] 
Get:11 https://cloud.r-project.org/bin/linux/ubuntu bionic-cran40/ Package
s [76.8 kB] 
Hit:12 http://ppa.launchpad.net/cran/libgit2/ubuntu bionic InRelease
Get:13 http://archive.ubuntu.com/ubuntu bionic-backports InRelease [74.6 k
B] 
Hit:14 http://ppa.launchpad.net/deadsnakes/ppa/ubuntu bionic InRelease 
Get:15 http://security.ubuntu.com/ubuntu bionic-security/restricted amd64 
Packages [806 kB] 
Get:16 http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu bionic InRelea
se [21.3 kB] 
Get:17 http://security.ubuntu.com/ubuntu bionic-security/universe amd64 Pa
ckages [1,474 kB] 
Get:18 http://security.ubuntu.com/ubuntu bionic-security/main amd64 Packag
es [2,596 kB] 
Get:20 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu180
4/x86_64  Packages [930 kB] 
Get:21 http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu bionic/main So
urces [1,827 kB] 
Get:22 http://archive.ubuntu.com/ubuntu bionic-updates/restricted amd64 Pa
ckages [840 kB] 
Get:23 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 Packages 
[3,035 kB] 
Get:24 http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu bionic/main am
d64 Packages [936 kB] 
Get:25 http://archive.ubuntu.com/ubuntu bionic-updates/universe amd64 Pack
ages [2,252 kB] 
Get:26 http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu bionic/main am
d64 Packages [42.8 kB] 
Fetched 15.1 MB in 4s (3,879 kB/s) 
Reading package lists... Done 
Reading package lists... Done 
Building dependency tree        
Reading state information... Done 
r-base is already the newest version (4.1.2-1.1804.0). 
The following package was automatically installed and is no longer require
d: 
 libnvidia-common-470 

Use 'apt autoremove' to remove it. 
0 upgraded, 0 newly installed, 0 to remove and 69 not upgraded. 
Requirement already satisfied: rpy2 in /usr/local/lib/python3.7/dist-packa
ges (3.4.5) 
Requirement already satisfied: cffi>=1.10.0 in /usr/local/lib/python3.7/di
st-packages (from rpy2) (1.15.0) 



Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-pac
kages (from rpy2) (2.11.3) 
Requirement already satisfied: tzlocal in /usr/local/lib/python3.7/dist-pa
ckages (from rpy2) (1.5.1) 
Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packa
ges (from rpy2) (2018.9) 
Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-
packages (from cffi>=1.10.0->rpy2) (2.21) 
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.
7/dist-packages (from jinja2->rpy2) (2.0.1) 
Instalación de R en Google Colab terminada 



In [2]:

# Estimated execution time: 4 seconds approx (not needing to import kknn and Cubist). 
# Libraries needed: 
# ISLR for multivariate linear regression 
# kknn for k-nearest neighbours regression 
# Cubist for M5-based regression models 

%%R 
### Installation of required libraries  
#install.packages(c("ISLR", "kknn", "Cubist")) 
install.packages(c("ISLR")) #kknn and Cubist will be used in the following capsule 
print ("Installation of R libraries for this module completed") 

### Import the required libraries 
require(ISLR) 
###require(kknn) 
##require(Cubist) 
print ("Import of the R libraries for this module is finished") 



R[write to console]: Installing package into ‘/usr/local/lib/R/site-librar
y’ 
(as ‘lib’ is unspecified) 

R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/ISLR
_1.4.tar.gz' 

R[write to console]: Content type 'application/x-gzip' 
R[write to console]:  length 1756715 bytes (1.7 MB) 
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In [3]:

# Estimated execution time: 2 seconds approx. 

%%R 
### Loading 
data <- read.csv(url("https://drive.google.com/uc?id=1GO2NBxYw54K6HkN-YgXbNadrLo5O6-0
u")) 

### Visualisation of a small part of the data 
head(data) 

R[write to console]: downloaded 1.7 MB 

R[write to console]:  

R[write to console]:  
R[write to console]: The downloaded source packages are in 

‘/tmp/RtmptZOy43/downloaded_packages’ 
R[write to console]:  
R[write to console]:  

[1] "Installation of R libraries for this module completed" 

R[write to console]: Loading required package: ISLR 

[1] "Import of the R libraries for this module is finished" 

 Sex  Age Tanner Height   BMI   WC TAGmgDL HDLCmgDL LDLCmgDL SBP DBP Sede
ntary 
1   1  9.5      0   1.55 11.34 60.0      55       51       93  97  60  41
1.0893 
2   1  8.0      0   1.15 12.40 46.3      51       70       59  90  55  43
5.6071 
3   0 10.5      0   1.42 12.99 67.5      65       60       96  96  54  48
3.9048 
4   0  8.1      0   1.27 13.43 53.1      41       78      100 108  46  42
9.2976 
5   1 10.4      0   1.32 13.72 51.9      39      100      120 107  69  51
2.0714 
6   0 10.4      0   1.29 14.02 54.9      57       76       73  87  59  45
1.2321 
    Light Moderate  Vigorous HOMA 

1 321.5804 22.13393  3.982143 1.98 
2 316.9762 48.05952 14.273810 0.87 
3 337.7857 33.30952  7.988095 1.46 
4 241.9762 39.67857 11.821429 1.07 
5 216.0357  9.75000  2.410714 0.80 
6 257.6429 36.40179  9.767857 1.35 



As we can see, the head command offers us a visualization of the available data for the first 6
individuals/instances of the set. In this visualization, we can identify variables such as the sex of the
individuals (coded as 0 for boys or 1 for girls), the pubertal stage (represented by the Tanner variable, and
coded as 0 for the pre-pubertal and 1 for pubertal), or the blood pressure (represented by the variables DBP
for diastolic blood pressure and SBP for systolic blood pressure). As shown, there are also variables for a
sedentary lifestyle, and light, moderate, or vigorous physical activity. The remaining abbreviated variables
refer to: BMI (body mass index); WC (waist circumference); TAG (triglycerides); HDL (high-density lipoprotein
or ‘good’ cholesterol); and LDL (low-density lipoprotein or ‘bad’ cholesterol), with the latter three being
expressed in milligrams/deciliter of blood.

3. INITIAL ASSESSMENT OF THE PROBLEM AND STUDY OF
THE VARIABLES OF GREATEST INTEREST 
Once we have imported the libraries and read the data, we are ready to see which variables are the most
promising for applying linear regression to this problem. To study which variables best explain the
behavior of HOMA-IR as the output variable, we could calculate the correlations between it and each of the
input variables (using the command: “cor(data)”), allowing us to choose those that are most correlated.

In our case, implementing this procedure on our data set shows that the correlation of SBP with HOMA-IR
was higher than for other input variables (e.g., Sex). Nonetheless, at the end of this capsule we will see that,
unlike Sex, SBP will eventually be eliminated from the final model. This can be explained by the fact that
construction of the final model does not only depend on the individual correlation of each input variable with
the output variable but rather, on the contribution of each variable with respect to the rest of the selected
variables. If what can be explained by one input variable is already better explained by another, the former
should not become part of the final model.

An alternative to the above is to graphically show the relationship of each input variable with respect to
the output variable, HOMA-IR. Thus, we can visually observe not only whether their relationship is
approximately linear, but also the shape of the point cloud. For example, we could see whether a variable
exhibits quadratic or logarithmic behavior, and therefore it would be more appropriate to include these terms
in the model. In our case study, we will opt for the second approach because it is considered more
informative. The following R code block iteratively plots, in order, all the input variables with respect to the
output variable (HOMA-IR).

NOTE: From here on it is important that you also read the comments included within the code for a better
understanding of the process.



In [4]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Display of the variable with respect to HOMA 
temp <- data 
plotY <- function (x,y) { 

plot(temp[,y]~temp[,x], xlab=paste(names(temp)[x]," X",x,sep=""), ylab=names(te
mp)[y]) 
} 
par(mfrow=c(4,4)) #If margin too large => (5,3) 
x <- sapply(1:(dim(temp)[2]-1), plotY, dim(temp)[2]) 
par(mfrow=c(1,1)) 

#cor(data) # Descomentar si queremos ver los valores concretos de correlación 

As a result, we can see how, despite showing some scatter in the data, the variables , , and 
 appear to be the most promising given that they show a relatively linear relationship with .

This scatter is a sign that there is no single explanatory factor for the value of insulin resistance (
). In addition, all three variables show some non-linearity, a behavior that was most

noticeable for , which seems to show a quadratic relationship to some extent. In the following code
blocks we will focus on these three variables and apply a simple linear regression to each of them as our first
line of analysis. These code blocks launch a simple linear regression between  and , 

, or , respectively.

BMI WC

Height HOMA

HOMA − IR

BMI

HOMA BMI

Height WC



In [5]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Obtaining the model. Function lm() from ISLR package. 
### Y=HOMA, X's=BMI (body mass index) -> formula: HOMA ~ BMI 
fitLM <- lm(HOMA ~ BMI, data=data)  

### Line display (blue, estimated values) vs actual values (black, observed values).  
yprime = predict(fitLM,data) 
plot(data$HOMA~data$BMI) 
points(data$BMI,yprime,col="blue",pch=20) 

### Coefficients (Estimate), p-values (Pr(>|t|)), Adjusted R2 (Adjusted R-squared), 
### F-statistic and p-value (F-statistic and p-value) 
summary(fitLM) 



Call: 
lm(formula = HOMA ~ BMI, data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-1.6176 -0.5495 -0.0203  0.5005  5.8905  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.987863   0.216053  -4.572 7.15e-06 *** 
BMI          0.115430   0.009277  12.442  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.8538 on 290 degrees of freedom 
Multiple R-squared:  0.348, Adjusted R-squared:  0.3458  
F-statistic: 154.8 on 1 and 290 DF,  p-value: < 2.2e-16 



In [6]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Idem for the Height variable 
fitLM <- lm(HOMA ~ Height, data=data)  
yprime = predict(fitLM,data) 
plot(data$HOMA~data$Height) 
points(data$Height,yprime,col="blue",pch=20) 
summary(fitLM) 

Call: 
lm(formula = HOMA ~ Height, data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-1.8080 -0.6062 -0.1728  0.4393  6.4400  

Coefficients: 
           Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -3.4639     0.5467  -6.336    9e-10 *** 
Height        3.6012     0.3848   9.359   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.9267 on 290 degrees of freedom 
Multiple R-squared:  0.232, Adjusted R-squared:  0.2293  
F-statistic: 87.58 on 1 and 290 DF,  p-value: < 2.2e-16 



In [7]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Idem for the variable WC (waist circumference) 
fitLM <- lm(HOMA ~ WC, data=data)  
yprime = predict(fitLM,data) 
plot(data$HOMA~data$WC) 
points(data$WC,yprime,col="blue",pch=20) 
summary(fitLM) 

Call: 
lm(formula = HOMA ~ WC, data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-1.6840 -0.5542 -0.0354  0.4949  5.9256  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.175876   0.260223  -4.519 9.07e-06 *** 
WC           0.036241   0.003296  10.995  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.8883 on 290 degrees of freedom 
Multiple R-squared:  0.2942, Adjusted R-squared:  0.2918  
F-statistic: 120.9 on 1 and 290 DF,  p-value: < 2.2e-16 



As a result, we can observe that the p-values associated with the coefficients of the three variables (column
with name " ") clearly indicate that all three are related to insulin resistance (as they acquire p-
values well below 0.1). Although it is the regression model based on ( ) that explains more variability in 

 (according to its adjusted  value), it is true that the value is not very high (0.3458).

Next, we will repeat the variable selection process but this time implementing the aforementioned top-down
approach, which is applicable here because we only have 15 input variables.

Pr(> ||t|)
BMI

HOMA R2

4. STEPWISE VARIABLE SELECTION: BACKWARD STEPWISE
REGRESSION 
In this section, we are going to leave behind simple linear regressions and move on to consider multiple
regression models. As already indicated, we will follow a descending variable selection approach. The
steps are shown one-by-one in the following code blocks so that the decisions made at each point in time
can be tracked.

As explained in the previous sections, variables selected by including all them inthe model by applying a
backward approach. This is achieved in R by means of the (Y ~ .) command, where the dot indicates "all
the available input variables in the dataset".



In [8]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Obtaining the model. Y=HOMA, X's=All -> formula: HOMA ~ . 
fitLM <- lm(HOMA ~ ., data=data)  

### Reminder: 
### Coefficients (Estimate), p-values (Pr(>|t|)), Adjusted R2 (Adjusted R-squared), 
### F-statistic and p-value (F-statistic and p-value) 
summary(fitLM) 

Call: 
lm(formula = HOMA ~ ., data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-2.4294 -0.4619 -0.0636  0.4089  5.1679  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -5.9193063  0.9463797  -6.255 1.51e-09 *** 
Sex          0.3046482  0.0961801   3.167  0.00171 **  
Age          0.0056148  0.0431482   0.130  0.89656     
Tanner       0.1345579  0.1352788   0.995  0.32077     
Height       2.4505541  0.7621021   3.216  0.00146 **  
BMI          0.1455896  0.0228539   6.370 7.86e-10 *** 
WC          -0.0247314  0.0086550  -2.857  0.00460 **  
TAGmgDL      0.0072443  0.0016646   4.352 1.90e-05 *** 
HDLCmgDL     0.0082428  0.0040629   2.029  0.04344 *   
LDLCmgDL    -0.0031440  0.0017745  -1.772  0.07753 .   
SBP          0.0041084  0.0043852   0.937  0.34964     
DBP          0.0086374  0.0054648   1.581  0.11513     
Sedentary    0.0010000  0.0005885   1.699  0.09038 .   
Light        0.0013119  0.0010782   1.217  0.22473     
Moderate     0.0038260  0.0047826   0.800  0.42441     
Vigorous    -0.0056749  0.0057629  -0.985  0.32562     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7556 on 276 degrees of freedom 
Multiple R-squared:  0.514, Adjusted R-squared:  0.4876  
F-statistic: 19.46 on 15 and 276 DF,  p-value: < 2.2e-16 



Once we have obtained the multiple linear regression model with all the input variables, it is essential we
not overlook the value obtained for the F statistic; this should be the first thing we check. As explained at
beginning of this capsule, if the value of  is close to 1 and/or its accompanying p-value exceeds  or 

, none of the variables used present a linear relationship with the output variable (HOMA-IR in our case).
This interpretation will always be independent of the individual p-value obtained for each coefficient,
which could mislead us until we eliminate redundant or uninformative input variables; in this situation, we
would stop the linear regression analysis and look for an alternative regression technique. However, as we
already knew from the initial values obtained in the previous section, this is not the case for our data set.

Checking the p-values obtained after this first step, we can see that the next step would be to eliminate the 
 variable because it has the highest p-value, equal to . An interesting detail is that the adjusted 

 of the complete model improves with respect to the  obtained for the simple linear regression models
of the previous section (reaching a value of ). To eliminate the  variable from the complete model
in R, we use the command with the subtraction sign "-" in the formula, thus obtaining the new model.

F 0.1
0.15

Age 0.89656
R2 R2

0.4876 Age

In [9]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Obtaining the model. Y=HOMA, X's=All-Age -> formula: HOMA ~ .-Age 
fitLM <- lm(HOMA ~ .-Age, data=data)  

summary(fitLM) 

Call: 
lm(formula = HOMA ~ . - Age, data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-2.4365 -0.4646 -0.0683  0.4115  5.1690  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -5.9584990  0.8955812  -6.653 1.53e-10 *** 
Sex          0.3034817  0.0955914   3.175  0.00167 **  
Tanner       0.1396497  0.1292663   1.080  0.28094     
Height       2.5180619  0.5572805   4.518 9.23e-06 *** 
BMI          0.1452026  0.0226194   6.419 5.92e-10 *** 
WC          -0.0245827  0.0085641  -2.870  0.00441 **  
TAGmgDL      0.0072474  0.0016615   4.362 1.82e-05 *** 
HDLCmgDL     0.0083213  0.0040108   2.075  0.03894 *   
LDLCmgDL    -0.0031315  0.0017687  -1.771  0.07774 .   
SBP          0.0040640  0.0043641   0.931  0.35255     
DBP          0.0086128  0.0054518   1.580  0.11529     
Sedentary    0.0010094  0.0005831   1.731  0.08455 .   
Light        0.0012833  0.0010537   1.218  0.22431     
Moderate     0.0038748  0.0047594   0.814  0.41627     
Vigorous    -0.0057566  0.0057184  -1.007  0.31496     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7543 on 277 degrees of freedom 
Multiple R-squared:  0.514, Adjusted R-squared:  0.4894  
F-statistic: 20.92 on 14 and 277 DF,  p-value: < 2.2e-16 



After removing , we can see how the new adjusted  of the model improves because we removed a
variable that did not contribute anything to the model. In view of these results, the next step will be to
eliminate the  physical activity variable.

Age R2

Moderate

In [10]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Same as above -Moderate 
fitLM <- lm(HOMA ~ .-Age-Moderate, data=data)  
summary(fitLM) 

As non-informative variables are removed, we can see how the adjusted  value of the resulting model
continues to incrementally improve. Next, we will eliminate the  variable which refers to the daily
number of minutes of $vigorous physical activity the children had engaged in.

At this point it is clear how to go about the procedure of eliminating non-informative variables one-by-one.
This process should always be done in this way, even if it is tedious. In the following section we will show the
steps we must take next to reach the last step (final model), which we will then run to see the final result.
Please also remember to carefully read the comments in the following code

R2

V igorous

Call: 
lm(formula = HOMA ~ . - Age - Moderate, data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-2.3679 -0.4614 -0.0789  0.4085  5.1735  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -5.8816129  0.8900476  -6.608 1.98e-10 *** 
Sex          0.2850872  0.0928265   3.071  0.00234 **  
Tanner       0.1457291  0.1289721   1.130  0.25948     
Height       2.5165450  0.5569393   4.519 9.22e-06 *** 
BMI          0.1475379  0.0224231   6.580 2.34e-10 *** 
WC          -0.0252296  0.0085219  -2.961  0.00334 **  
TAGmgDL      0.0072720  0.0016602   4.380 1.68e-05 *** 
HDLCmgDL     0.0084659  0.0040044   2.114  0.03539 *   
LDLCmgDL    -0.0032874  0.0017572  -1.871  0.06243 .   
SBP          0.0041578  0.0043599   0.954  0.34109     
DBP          0.0079398  0.0053855   1.474  0.14154     
Sedentary    0.0009849  0.0005820   1.692  0.09168 .   
Light        0.0016399  0.0009578   1.712  0.08799 .   
Vigorous    -0.0031646  0.0047472  -0.667  0.50556     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7538 on 278 degrees of freedom 
Multiple R-squared:  0.5128, Adjusted R-squared:   0.49  
F-statistic: 22.51 on 13 and 278 DF,  p-value: < 2.2e-16 



In [11]:

# Estimated execution time: approx. 3 seconds. 

%%R 
#fitLM <- lm(HOMA ~ .-Age-Moderate-Vigorous, data=data) 
#summary(fitLM) 
#fitLM <- lm(HOMA ~ .-Age-Moderate-Vigorous-SBP, data=data) 
#summary(fitLM) 
#fitLM <- lm(HOMA ~ .-Age-Moderate-Vigorous-SBP-Tanner, data=data) 
#summary(fitLM) 

### In the above model already all p-values could be considered correct. 
### For simplicity we have continued to remove while the adjusted R2 has hardly been af
fected. 
#fitLM <- lm(HOMA ~ .-Age-Moderate-Vigorous-SBP-Tanner-Light, data=data) 
#summary(fitLM) 
#fitLM <- lm(HOMA ~ .-Age-Moderate-Vigorous-SBP-Tanner-Light-Sedentary, data=data) 
#summary(fitLM) 

### From here R2 would start to get significantly worse. 
### We stop and reformulate for readability by indicating the selected input variables
in an additive way. 
### This model is equivalent to the one immediately above but shows clearly what is sel
ected 
fitLM <- lm(HOMA ~ BMI+Height+TAGmgDL+Sex+WC+LDLCmgDL+HDLCmgDL+DBP, data=data) #See tha
t the dot is no longer included 
summary(fitLM) 

As a result, we obtain a model with 8 input variables and an adjusted  of 0.4861.R2

Call: 
lm(formula = HOMA ~ BMI + Height + TAGmgDL + Sex + WC + LDLCmgDL +  
   HDLCmgDL + DBP, data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-2.4022 -0.4525 -0.0408  0.3880  5.0570  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -5.133154   0.656353  -7.821 1.05e-13 *** 
BMI          0.156909   0.021985   7.137 8.04e-12 *** 
Height       2.764817   0.413419   6.688 1.21e-10 *** 
TAGmgDL      0.007288   0.001646   4.428 1.36e-05 *** 
Sex          0.307461   0.090695   3.390 0.000798 *** 
WC          -0.027091   0.008387  -3.230 0.001383 **  
LDLCmgDL    -0.003229   0.001751  -1.844 0.066178 .   
HDLCmgDL     0.008966   0.003986   2.250 0.025241 *   
DBP          0.009670   0.005138   1.882 0.060843 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7567 on 283 degrees of freedom 
Multiple R-squared:  0.5002, Adjusted R-squared:  0.4861  
F-statistic:  35.4 on 8 and 283 DF,  p-value: < 2.2e-16 



5. INTERACTIONS AND NON-LINEARITY 
Once we have selected the input variables to be incorporated into our linear model, we will try to explain the
non-linear part of the data by adding interactions and other non-linear terms. To assess these
interactions, we rely on our prior knowledge of the problem. For example, in a case of a known genetic
interaction between two genetic variants, it would be appropriate to introduce an interaction term between the
two to model their effect on the output variable. Where there is no prior information on any interaction
phenomena, we can also be guided by logic or intuition, depending on the meaning of the input variables. If
we still cannot find any possible interactions, we can randomly test the variables shown to be most significant
(trial-and-error). However, this procedure is not a trivial and depends on our own skill and experience.

In our case study on childhood obesity, we will evaluate whether there is positive synergy (multiplicative
factors, ) between the triglyceride variable and the two cholesterol metrics (because they all belong to the
lipid profile).

∗

In [12]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Interactions between triglycerides and cholesterols 
fitLM <- lm(HOMA ~ BMI+Height+TAGmgDL+Sex+WC+LDLCmgDL+HDLCmgDL+DBP+TAGmgDL*HDLCmgDL*LDL
CmgDL, data=data) 
summary(fitLM) 

Call: 
lm(formula = HOMA ~ BMI + Height + TAGmgDL + Sex + WC + LDLCmgDL +  
   HDLCmgDL + DBP + TAGmgDL * HDLCmgDL * LDLCmgDL, data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-2.5603 -0.4625 -0.0600  0.3862  4.9757  

Coefficients: 
                           Estimate Std. Error t value Pr(>|t|)    

(Intercept)               -4.756e+00  1.512e+00  -3.144 0.001844 ** 
BMI                        1.580e-01  2.221e-02   7.113 9.59e-12 ***
Height                     2.799e+00  4.170e-01   6.712 1.07e-10 ***
TAGmgDL                    1.097e-02  1.748e-02   0.627 0.531002    
Sex                        3.130e-01  9.187e-02   3.408 0.000752 ***
WC                        -2.775e-02  8.486e-03  -3.270 0.001209 ** 
LDLCmgDL                  -9.731e-03  1.388e-02  -0.701 0.483962    
HDLCmgDL                   1.049e-03  2.518e-02   0.042 0.966806    
DBP                        9.692e-03  5.168e-03   1.876 0.061766 .  
TAGmgDL:HDLCmgDL          -7.809e-05  3.563e-04  -0.219 0.826677    
TAGmgDL:LDLCmgDL           2.741e-06  1.649e-04   0.017 0.986754    
LDLCmgDL:HDLCmgDL          1.366e-04  2.554e-04   0.535 0.593230    
TAGmgDL:LDLCmgDL:HDLCmgDL -1.602e-07  3.308e-06  -0.048 0.961424    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.76 on 279 degrees of freedom 
Multiple R-squared:  0.503, Adjusted R-squared:  0.4816  
F-statistic: 23.53 on 12 and 279 DF,  p-value: < 2.2e-16 



Note that the use of operators already includes all the hierarchy terms. If it did not, we would have to add
them by hand before looking at any p-values or making any decisions. We can see that the term
TAGmgDL:LDLCmgDL:HDLCmgDL has an exceptionally bad p-value ( ), indicating that this
hypothesized interaction was not pertinent.

We will now retest the model with the height and waist circumference values.

0.961424

In [13]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Interactions between height and waist circumference 
fitLM <- lm(HOMA ~ BMI+Height+TAGmgDL+Sex+WC+LDLCmgDL+HDLCmgDL+DBP+Height*WC, data=dat
a) 
summary(fitLM) 

In this case we can see how the interaction explains part of the non-linearity given that a p-value of less
than 0.1 was obtained. Therefore, in principle we will retain this as part of the model.

Finally, we must check for other non-linear terms. In this case, since we initially plotted all the input variables
with respect to the output variable , it is much easier to determine certain types of non-linear
behavior visually. Of note, we saw that  appeared to have a quadratic relationship with 

. Therefore, we will also try to include this term in the model. This can be achieved using the 
function in R, denoting the power as follows , in our case . The  function
does not automatically generate the hierarchy terms and so, before we can even look at the model, we must
make sure that the formula contains all the hierarchy terms. In our case, the hierarchy terms would be 

.

HOMA − IR

HOMA − IR

BMI I(. )
I( exponent)Xj^ I(BMI 2)^ I(. )

BMI + BM + Height + WC + Height ∗ WCI 2

Call: 
lm(formula = HOMA ~ BMI + Height + TAGmgDL + Sex + WC + LDLCmgDL +  
   HDLCmgDL + DBP + Height * WC, data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-2.5403 -0.4401 -0.0268  0.4154  4.3876  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  4.916865   2.172910   2.263  0.02441 *   
BMI          0.159749   0.021173   7.545 6.27e-13 *** 
Height      -4.246495   1.504020  -2.823  0.00509 **  
TAGmgDL      0.007283   0.001584   4.597 6.49e-06 *** 
Sex          0.275412   0.087561   3.145  0.00184 **  
WC          -0.159204   0.028498  -5.587 5.45e-08 *** 
LDLCmgDL    -0.003340   0.001685  -1.982  0.04844 *   
HDLCmgDL     0.008494   0.003838   2.213  0.02769 *   
DBP          0.010512   0.004949   2.124  0.03453 *   
Height:WC    0.090497   0.018721   4.834 2.20e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7285 on 282 degrees of freedom 
Multiple R-squared:  0.5384, Adjusted R-squared:  0.5237  
F-statistic: 36.55 on 9 and 282 DF,  p-value: < 2.2e-16 



In [14]:

# Estimated execution time: approx. 3 seconds. 

%%R 
### Interactions between height and waist circumference, plus BMI^2 
fitLM <- lm(HOMA ~ BMI+Height+TAGmgDL+Sex+WC+LDLCmgDL+HDLCmgDL+DBP+Height*WC+I(BMI^2),
data=data) 
summary(fitLM) 

Again, terms with high p-values appear, as is the case for . The interaction was trying to
explain what the quadratic  term now explains better. We will therefore remove the now non-significant
interaction. Recall that the BMI variable was already clearly showing a non-linear quadratic appearance in
the graph.

Height ∗ WC

BMI

Call: 
lm(formula = HOMA ~ BMI + Height + TAGmgDL + Sex + WC + LDLCmgDL +  
   HDLCmgDL + DBP + Height * WC + I(BMI^2), data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-1.9267 -0.3865  0.0019  0.3615  3.4774  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  4.308654   1.964056   2.194  0.02907 *   
BMI         -0.443050   0.077356  -5.727 2.62e-08 *** 
Height       0.682096   1.490290   0.458  0.64753     
TAGmgDL      0.006089   0.001439   4.232 3.14e-05 *** 
Sex          0.237497   0.079227   2.998  0.00296 **  
WC          -0.041319   0.029621  -1.395  0.16414     
LDLCmgDL    -0.002949   0.001523  -1.936  0.05383 .   
HDLCmgDL     0.005186   0.003491   1.486  0.13852     
DBP          0.005995   0.004505   1.331  0.18434     
I(BMI^2)     0.012615   0.001569   8.042 2.48e-14 *** 
Height:WC    0.016942   0.019224   0.881  0.37890     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.658 on 281 degrees of freedom 
Multiple R-squared:  0.6248, Adjusted R-squared:  0.6115  
F-statistic: 46.79 on 10 and 281 DF,  p-value: < 2.2e-16 



In [15]:

# Estimated execution time: approx. 3 seconds. 

%%R 
fitLM <- lm(HOMA ~ BMI+Height+TAGmgDL+Sex+WC+LDLCmgDL+HDLCmgDL+DBP+I(BMI^2), data=data) 
summary(fitLM) 

According to the new model,  would also now have to be eliminated.DBP

Call: 
lm(formula = HOMA ~ BMI + Height + TAGmgDL + Sex + WC + LDLCmgDL +  
   HDLCmgDL + DBP + I(BMI^2), data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-1.8747 -0.3846 -0.0021  0.3674  3.5269  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.821314   1.004299   2.809  0.00531 **  
BMI         -0.474890   0.068374  -6.945 2.61e-11 *** 
Height       1.954571   0.369059   5.296 2.39e-07 *** 
TAGmgDL      0.006028   0.001437   4.196 3.64e-05 *** 
Sex          0.240162   0.079138   3.035  0.00263 **  
WC          -0.016037   0.007380  -2.173  0.03060 *   
LDLCmgDL    -0.002912   0.001522  -1.914  0.05666 .   
HDLCmgDL     0.005082   0.003488   1.457  0.14619     
DBP          0.005638   0.004485   1.257  0.20978     
I(BMI^2)     0.013273   0.001379   9.624  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6577 on 282 degrees of freedom 
Multiple R-squared:  0.6238, Adjusted R-squared:  0.6118  
F-statistic: 51.95 on 9 and 282 DF,  p-value: < 2.2e-16 



In [16]:

# Estimated execution time: approx. 3 seconds. 

%%R 
fitLM <- lm(HOMA ~ BMI+Height+TAGmgDL+Sex+WC+LDLCmgDL+HDLCmgDL+I(BMI^2), data=data) 
summary(fitLM) 

And finally  must also be removed.

In an additional line of code, we have also included how to calculate the RMSE metric for a linear regression
model (which did not appear in the output of the results offered by the summary command).

HDLCmgDL

Call: 
lm(formula = HOMA ~ BMI + Height + TAGmgDL + Sex + WC + LDLCmgDL +  
   HDLCmgDL + I(BMI^2), data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-1.9051 -0.3843 -0.0047  0.3459  3.5083  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.176416   0.964737   3.293  0.00112 **  
BMI         -0.480043   0.068321  -7.026 1.58e-11 *** 
Height       1.930855   0.368954   5.233 3.25e-07 *** 
TAGmgDL      0.006063   0.001438   4.217 3.33e-05 *** 
Sex          0.241655   0.079210   3.051  0.00250 **  
WC          -0.015478   0.007374  -2.099  0.03669 *   
LDLCmgDL    -0.002774   0.001519  -1.826  0.06898 .   
HDLCmgDL     0.005268   0.003488   1.510  0.13208     
I(BMI^2)     0.013435   0.001375   9.774  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6584 on 283 degrees of freedom 
Multiple R-squared:  0.6217, Adjusted R-squared:  0.611  
F-statistic: 58.13 on 8 and 283 DF,  p-value: < 2.2e-16 



In [17]:

# Estimated execution time: approx. 3 seconds. 

%%R 
fitLM <- lm(HOMA ~ BMI+Height+TAGmgDL+Sex+WC+LDLCmgDL+I(BMI^2), data=data) 

### RECM calculation 
yprime = predict(fitLM,data) 
cat('\nRMSE:', sqrt(sum((data$HOMA-yprime)^2)/length(yprime)), "\n") #RECM->RMSE 

summary(fitLM) 

Visualization:

RMSE: 0.6507716  

Call: 
lm(formula = HOMA ~ BMI + Height + TAGmgDL + Sex + WC + LDLCmgDL +  
   I(BMI^2), data = data) 

Residuals: 
   Min      1Q  Median      3Q     Max  

-1.8923 -0.3932  0.0004  0.3582  3.5091  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.797671   0.874612   4.342 1.97e-05 *** 
BMI         -0.495014   0.067751  -7.306 2.79e-12 *** 
Height       1.952522   0.369506   5.284 2.52e-07 *** 
TAGmgDL      0.005433   0.001379   3.940 0.000103 *** 
Sex          0.224973   0.078613   2.862 0.004526 **  
WC          -0.016985   0.007322  -2.320 0.021069 *   
LDLCmgDL    -0.002803   0.001523  -1.841 0.066719 .   
I(BMI^2)     0.013684   0.001368  10.006  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6599 on 284 degrees of freedom 
Multiple R-squared:  0.6186, Adjusted R-squared:  0.6092  
F-statistic: 65.81 on 7 and 284 DF,  p-value: < 2.2e-16 



In [18]:

#yprime = predict(fitLM,data) 

%%R 
plot(data$HOMA~data$BMI) 
points(data$BMI,yprime,col="blue",pch=20) 

Finally, we have arrived at adjusted  of 0.6092 when we had started at 0.3458. But the most important
thing is not the value itself but rather, what we were able to learn about the data and our problem based on
statistical values. The main conclusion we can draw is that a high body mass index in children is one of the
main risk factors for insulin resistance. Even if the conclusion is that we must rethink the problem with new
variables and measurements, coming to this realization would still represent a big step.

R2



6. CROSS- VALIDATION 
Once we have obtained the best formula for applying the parametric fit (regression model), if we want to
estimate new values of the output variable and compare its predictive ability with other models, as explained
in Module 3 (Data science and machine learning), we must apply a cross-validation. In the following code, we
show how this can be achieved.

In [19]:

%%R 

set.seed(123456) 
k <- 5             
data$kfold <- sample(1:k, nrow(data), replace = T) 

performances <- c() 
 
# One iteration per fold 
for (fold in 1:k){ 
 # Training set is created for iteration 
 training_set <- data[data$kfold != fold,] 
 nombres <- names(training_set) 
 tam <- length(nombres)-1 
 training_set <- training_set[,nombres[1: tam]]
    
 # Create test set for this iteration 
 # Subset all the datapoints where .folds matches the current fold 
 testing_set <- data[data$kfold == fold,] 
 nombres <- names(testing_set) 
 tam <- length(nombres)-1 
 testing_set <- testing_set[,nombres[1: tam]] 

 ## Training the model for iteration 
 model <- lm(HOMA ~ BMI+Height+TAGmgDL+Sex+WC+LDLCmgDL+I(BMI^2), data=training_set) 

 ## Calculating test error 
 yprime <- predict(model, testing_set) 
 RMSE <- sqrt(sum((testing_set$HOMA-yprime)^2)/length(yprime)) 

 # Add the RMSE to the performance list 
 performances[fold] <- RMSE 
} 

# Remove the artificial column added for kfold 
#(so that it doesn't accumulate columns if it is executed several times) 
nombres <- names(data) 
tam <- length(nombres)-1 
data <- data[,nombres[1: tam]] 

cat("mean RMSE  in test for 5-fcv:", mean(performances)) 

mean RMSE  in test for 5-fcv: 0.6956061
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