
Module 4 - Supervised Learning: regression techniques.

4.1 Regression: what, why, and how?
Authors:

By Rafael Alcalá

Professor at the University of Granada

Andalusian Inter-University Institute in Data Science and Computational Intelligence (DaSCI)

And by Augusto Anguita-Ruiz

Postdoctoral Research Fellow at Barcelona Institute for Global Health- ISGlobal.

Reminder: Introduction to NoteBook.

In this NoteBook you will be guided, step-by-step, through loading a dataset to the descriptive analysis of its
contents. The Jupyter NoteBook (Python) is an approach that combines text blocks (like this one) and code
blocks or cells. The great advantage of this system is its interactivity because cells can be executed to
directly check the results they contain.

Very important: the order of the instructions is fundamental and so each cell in this NoteBook must be
executed sequentially. If any are omitted, the program may throw an error and so if there is any doubt, you
will have to start from the beginning again.

First, it is very important to select “Open in draft mode” (draft mode) at the top left at the beginning.
Otherwise, for security reasons, you will not be allowed to execute any code blocks. When the first of the
blocks is executed, the following message will appear: “Warning: This NoteBook was not created by Google”.
Don’t worry, you can trust the contents of the NoteBook and click on “Run anyway”.

Let’s start!

Click on the “play” button on the left side of each code cell. Remember that lines beginning with a hashtag (#)
are comments and do not affect the execution of the script. You can also click on each cell and press
“Ctrl+enter” (“Cmd+Enter” on Mac). Each time you execute a block, you will see the output just below it. The
information is usually always the last statement, along with any print() commands present in the code.

INDEX
In this NoteBook:

1. We will learn the general concepts of regression methods.
2. We discuss their possible bioinformatics applications using biological datasets.

Contents:

1. An introduction to regression techniques and their relevance in the field of bioinformatics
2. Reasons for wanting a good estimate of : examples in biological datasets
3. Quality metrics for regression models
4. Description of the dataset used in this module
5. Why use R? Installation of the R environment and its libraries for use in regressions
6. Loading the data
7. Bibliography

f

1. INTRODUCTION TO REGRESSION TECHNIQUES AND THEIR
RELEVANCE IN THE FIELD OF BIOINFORMATICS
High-throughput omics technologies such as DNA microarrays, mass spectrophotometry or protein chips
have been widely used in recent years in biomedical sciences to unveil the molecular mechanisms
underlying disease. Among other parameters, these techniques allow the expression level of thousands or
millions of genes, metabolites or proteins to be simultaneously determined in a wide variety of biological
tissues. The data derived from these techniques, collectively known as "omics data", are therefore highly
complex and dimensional clusters. Their main characteristics include the fact that they present
continuous domains (i.e., the expression of a gene/metabolite/protein will be measured as values from 0
upwards), the phenomena of collinearity between variables (i.e., two genes participating in the same
cellular pathway will have very similar expression levels), and the presence of epistatic interaction
phenomena (through which certain genes are able to modulate the effect that other genes have on the
phenotype).

Therefore, it is vital that we identify the most appropriate analytical methods capable of dealing with these
particularities. In most cases, a bioinformatics researcher working with omics data will be interested in (1)
identifying functional relationships between each gene/metabolite/protein and the phenotype of interest
(associations), (2) reducing the number of starting genes/metabolites/proteins by generating a less
complex dataset, or (3) generating a model with good predictive ability for the phenotype of interest
(output variable).

For all these purposes, the regression techniques introduced in this module are particularly appropriate,
and have become established themselves as some of the gold-standard bioinformatics approaches. The
main reasons for this are that the design of these techniques is oriented to work with continuous
variables, their versatility in identifying redundant variables, and their capacity to estimate unknown
values stand out. Beyond omics data, regression techniques have also proven to be very useful when
working with other biological data sources commonly used in biomedicine, such as microscopy-derived
data (in which images are transformed into numerical values), or anthropometric, clinical, and
biochemical measurements that are usually obtained during a case-control study.

By definition, regression techniques study the relationships existing between input variables (independent
variables), usually referred to as , and an output variable (dependent variable), termed .
Thus, a regressor can estimate the expected value that would take, given a set of values for the variables

. Linking with the previous part of the course, regression methods are a type of supervised machine
learning designed to predict a continuous value. To do this, models are built that specify the change in the
response (output) of each input variable, assuming that all the other variables remain constant:

Where is an unknown function and is a random error whose mean is zero; the higher the
variance of the greater the difficulty in estimating . Such variance is generally higher the smaller
the number of instances available and/or the larger the number of input variables actually required, which is
quite often the case in the field of bioinformatics.

A regression model can take many different forms including that of: a function (see Figure 1), set of rules,
neural network, support vector machine (SVM), among others. In this module, we will look very briefly at
three of the best-known regression methods: simple and multiple linear regression, the -nearest-
neighbors (KNN) method, and the M5 regression model.

, , … ,X1 X2 Xp Y

Y

X

= f() +Yi Xi ϵi

f epsilon

epsilon f

k

2. REASONS FOR WANTING A GOOD ESTIMATE OF :
EXAMPLES IN BIOLOGICAL DATA SETS
In Machine Learning, and therefore also in the case of regression, data are used to "learn" . As we have
introduced throughout this capsule, there are two main reasons why we might want to get a good estimate of

 as described below:

• Prediction: If we can produce a good estimate for (and the variance of is not too large) we can
make accurate predictions for the output variable, , based on a new value of . In this case, we try to
learn models that are as accurate as possible. A very clear example of this type of application in
bioinformatics is the use of polygenetic risk scores othwerwise known as Genetic Risk Scores (GRS).
GRSs are scoring systems that allow us to assess an individual's genetic risk for a certain disease or
phenotypic trait. They are calculated as the weighted sum of the number of risk alleles an individual
carries among a battery of genetic markers. Once the polygenetic risk score has been calculated for each
individual, it is common to construct a regression model to predict the unknown values of a continuous
phenotype of interest (e.g. survival time of a patient or high levels of a biomarker in blood) with these
values as the input variable. The great utility of polygenetic risk scores and their incorporation into
predictive regression models lies in their ability to predict continuous phenotypes of interest with a large
anticipation in time (since an individual's genetics is a parameter that can be assessed from birth). The
application of predictive regression models based on GRSs to estimate future body mass index (or obesity
status) in overweight children has been a widely used technique in recent years.

• Interpretation/explanation/discovery: Alternatively, we might also be interested in discovering the type
of relationships between the output variable and each of the input variables, as well as between the

 variables themselves. To this end, we try to learn models that explain the variable from the
variables. Regression models are also widely used in bioinformatics for this purpose; especially in the field of
omics. Notable examples include (1) the discovery of genetic variants responsible for the development of a
disease (in this case, a continuous phenotype of interest such as high blood cholesterol levels), or (2) the
identification of omics interaction phenomena such as those between genetic variants and metabolites
(mQTLs), genetic variants and DNA methylation (meQTLs), or DNA methylation and metabolites (mCpG).

These two rationales are usually contradictory, with one almost always predominating over the other
depending on the specific needs of the problem.

F

f

f

f epsilon

Y X

Yi

X

Y sX ′

sX ′ Y sX ′

3. QUALITY METRICS FOR REGRESSION MODELS
A well-fit regression model results in estimated/predicted values close to the observed data values for an
output or dependent variable , based on the observed values on other input or independent
variables. If there were no informative input variables, one would generally use the mean model, which
directly uses the mean of the observed data as a prediction for any new unknown values. This would be
the worst-case scenario when looking for linear relationships between the input variables and the output
variable. Therefore, we must will always look for the fit of a proposed regression model to be better than that
of the mean model.

In regression, as in other areas of Machine Learning, many metrics are available to assess the quality of the
models obtained; including the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), (when
its calculation is possible and/or makes sense), and mean absolute error (MAE), etc. In this section we will
discuss the two most widely used statistics among the above: the and the RMSE. The calculation of both
these parameters is based on two sums of squares: total sum-of-squares (TSS) and residual sum-of-
squares (RSS). On the one hand, the TSS measures how far the data are from the worst model that could
be learned by the learning technique used. For example, how far the data are from a constant line distribution
centered on the mean, which would be the worst model in the case of multivariate linear regression learning.
TSS cannot be calculated (or it does not make sense to do so) for all regression methods and so TSS-based
measures are not always available. On the other hand, the RSS measures how far the data are from the
values predicted by the learned model (the difference in the absolute value).

Different combinations of these two values provide different information on how the regression model
compares with models obtained by the same technique or by different regression techniques:

 (or R-squared): The difference between TSS and RSS represents the improvement in prediction of
the regression model compared to the worst model that could theoretically be obtained with that
technique. Dividing that difference by TSS gives . Thus, is the proportional improvement in the
prediction of the regression model, compared to the worst model, and indicates the goodness of fit
of the model for a particular technique. has the useful property that its scale is intuitive: it ranges
from zero to one, with indicating that the proposed model does not improve the prediction ability over
the worst theoretical model for that technique, and indicating perfect prediction. Improvement in the
regression model results in proportional increases in R .

RMSE (Root Mean Squared Error): The root mean squared error is the square root of the variance of
the residuals. In this case, only the RSS (squared differences) is used and so it is applicable to models
obtained by any regression technique. RMSE indicates the absolute fit of the model to the data; in other
words, how close the observed data points are to the values predicted by the model. With being the
number of data and each of the differences between the observed data and the model-predicted
value (), RMSE can be calculated as follows:

While is a relative measure of fit, RMSE is an absolute measure. Therefore, it has the useful property of
being measured in the same units as the response variable. Lower values of RMSE indicate a better fit.
RMSE is a good measure of the accuracy with which the model predicts the response, and is the criterion
most commonly used to measure fit if the primary purpose of the model is prediction.

Y sX ′

Y

R2

R2

R2

R2 R2

R2

0
1

2

= (TSS − RSS)/TSS = 1 − RSS/TSSR2

n

ei

= −ei yi y′
i

RMSE = 1
n
∑n

i=1 e2
i

− −−−−−−−
√

R2

4. DESCRIPTION OF THE DATA SET USED IN THIS MODULE

Whenever we talk about continuous, integer, or categorical variables where the information can be
represented numerically following a logical order (also known as ordinary variables), regression methods
will be applicable and useful. This point is extremely important and is the main difference between
regression and ranking methods. In classification, non-ordinal categorical variables will make sense. In
regression, however, they have no place.

We could apply several different regression methods to the dataset we have been working with since the
beginning of the course, The Cancer Genome Atlas (TCGA) according to different scenarios. For example,
we could use a regression model to predict the survival time of melanoma patients based on the expression
of genes previously shown to be directly involved in the pathophysiology of the disease. We could also use
regression models to discover relationships between variables (in this case, genes) to reveal molecular
interaction phenomena, whereby the products of one or more genes interact with each other to condition the
appearance or worsening of the pathology.

Although, a priori, both these examples are valid, problems can arise when we want to make important
inferences about parameters such as patient survival by using only gene expression data. Firstly, the
expression of a gene represents a single, small piece within the complex puzzle of mechanisms underlying
the appearance and malignization of a tumor. Secondly, although we may find several alternative clinical
variables in the original dataset that could all be useful, most of them do not present continuous domains.

Taking this into consideration, in this module, we propose the analysis of an alternative dataset consisting of
clinical data on childhood obesity, obtained in patients who might present insulin resistance. This type of
data, which includes both clinical and anthropometric data, has proven to be especially useful for predicting
clinically relevant output variables such as the insulin resistance index (HOMA-IR). Among other
applications, estimation of this index in overweight or obese children allows us to identify children at a
considerable risk of developing type 2 diabetes in the future.

This obesity dataset contains information for 16 variables in 292 children and was derived from a cohort of
Spanish children aged 5–15 years, grouped into three experimental conditions (normal weight, overweight,
and obese). A wide range of clinical, biochemical, and anthropometric (body composition) data, as well as
lifestyle and physical activity data (obtained by accelerometers), are available for these children. By applying
regression techniques on this dataset, it would be possible to study the relationship between
anthropometric, biochemical, physical activity, and insulin-resistance status variables, as well as to
predict HOMA-IR based on the above. In the analyses addressed in this module, the HOMA-IR will be
included as an output variable from our regression models because it has been widely validated as a good
indicator of insulin resistance and pre-diabetic status both in children and adults. We will use clinical and
anthropometric data such as sex, age, pubertal stage, height, waist circumference and body mass index
(BMI) as well as the main measures of physical activity such as the daily minutes of inactivity (sedentary
behavior), or of mild, moderate, and vigorous physical activity, as input variables in this model. In addition,
indicators of cardio-metabolic dysfunction other than HOMA-IR itself (such as HDLc and LDLc cholesterol,
triglyceride, and blood pressure levels) will also be included. These factors are all related to the level of
patient insulin resistance and present continuous domains. Therefore, they constitute a perfect set of input
variables for the application of regression models.

5. WHY USING R? INSTALLING THE R ENVIRONMENT AND ITS
LIBRARIES FOR REGRESSION
As we saw in Module 2 for data loading, and although Python is the language of choice for this course, the R
libraries offer a much more convenient way to apply the regression algorithms we will see in this module. In
R, the algorithms allow a direct formulation to be made using the variables of any data set. This allows a
stepwise construction of the models, integrating/determining the really relevant variables and discovering the
type of relationship/interaction between them. Likewise, in R more algorithms are available and, in our case,
it is necessary to use the M5 algorithm (via Cubist) as it is almost a paradigm in the regression area (see the
study carried out in 2019 among 164 algorithms by Gacto et. al. where a simple tree is shown to be
competitive against the best ensembles of 500 trees - Bibliography section). Thus, in this module, we will use
functions of R to apply the regression algorithms indicated.

The installation of R in our Google Colab environment was already explained in Module 2 of this MOOC, so
here we directly include the relevant instructions. It should be remembered that all library installations we
perform in the Google Colab environment will only remain active for a few hours, after which the installed
libraries are removed. Therefore, you will need to re-run the library installation codes in this section
when you need to run notebooks containing R code. In any case, the codes to perform this installation
will be included at the beginning of each of the capsules where it is necessary.

Finally, remember that when a cell uses R code this is indicated by the %%R symbology in Python
notebooks. By removing that line, which serves to indicate that what follows in the notebook is written in R,
we could execute the same instructions in any R environment other than the notebook without any problems.
For example, on our own Windows, Linux, MacOS machine using our local installation of R and RStudio.

The following code snippet, corresponding to the R installation, is exclusive to the use of Colab notebooks
and would be equivalent to installing R andRStudio on our machines:

In []:

Estimated execution time: approx. 20 seconds.

Installing R on Google Colab notebooks ###
!apt-get update
!apt-get install r-base
!pip install rpy2==3.5.1
%load_ext rpy2.ipython
print ("R installation on Google Colab completed")

Get:1 https://cloud.r-project.org/bin/linux/ubuntu bionic-cran40/ InReleas
e [3,626 B]
Ign:2 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/
x86_64 InRelease
Ign:3 https://developer.download.nvidia.com/compute/machine-learning/repo
s/ubuntu1804/x86_64 InRelease
Get:4 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/
x86_64 Release [696 B]
Get:5 http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu bionic InReleas
e [15.9 kB]
Hit:6 https://developer.download.nvidia.com/compute/machine-learning/repo
s/ubuntu1804/x86_64 Release
Get:7 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/
x86_64 Release.gpg [836 B]
Hit:8 http://archive.ubuntu.com/ubuntu bionic InRelease
Get:9 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 k
B]
Get:10 https://cloud.r-project.org/bin/linux/ubuntu bionic-cran40/ Package
s [76.8 kB]
Get:11 http://archive.ubuntu.com/ubuntu bionic-updates InRelease [88.7 kB]
Hit:12 http://ppa.launchpad.net/cran/libgit2/ubuntu bionic InRelease
Hit:14 http://ppa.launchpad.net/deadsnakes/ppa/ubuntu bionic InRelease
Get:15 http://archive.ubuntu.com/ubuntu bionic-backports InRelease [74.6 k
B]
Get:16 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu180
4/x86_64 Packages [930 kB]
Get:17 http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu bionic InRelea
se [21.3 kB]
Get:18 http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu bionic/main So
urces [1,827 kB]
Get:19 http://security.ubuntu.com/ubuntu bionic-security/universe amd64 Pa
ckages [1,474 kB]
Get:20 http://archive.ubuntu.com/ubuntu bionic-updates/restricted amd64 Pa
ckages [840 kB]
Get:21 http://security.ubuntu.com/ubuntu bionic-security/restricted amd64
Packages [806 kB]
Get:22 http://security.ubuntu.com/ubuntu bionic-security/main amd64 Packag
es [2,596 kB]
Get:23 http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu bionic/main am
d64 Packages [936 kB]
Get:24 http://archive.ubuntu.com/ubuntu bionic-updates/universe amd64 Pack
ages [2,252 kB]
Get:25 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 Packages
[3,035 kB]
Get:26 http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu bionic/main am
d64 Packages [42.8 kB]
Fetched 15.1 MB in 4s (4,028 kB/s)
Reading package lists... Done
Reading package lists... Done
Building dependency tree
Reading state information... Done
r-base is already the newest version (4.1.2-1.1804.0).
The following package was automatically installed and is no longer require
d:
 libnvidia-common-470

Use 'apt autoremove' to remove it.
0 upgraded, 0 newly installed, 0 to remove and 69 not upgraded.
Requirement already satisfied: rpy2 in /usr/local/lib/python3.7/dist-packa
ges (3.4.5)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-pac
kages (from rpy2) (2.11.3)

From here, removing the %%R command line, the resulting R code could be run, as indicated, in a local
installation via RStudio. The next piece of code corresponds to the installation and import of the libraries
necessary for the use of the regression algorithms indicated.

Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packa
ges (from rpy2) (2018.9)
Requirement already satisfied: cffi>=1.10.0 in /usr/local/lib/python3.7/di
st-packages (from rpy2) (1.15.0)
Requirement already satisfied: tzlocal in /usr/local/lib/python3.7/dist-pa
ckages (from rpy2) (1.5.1)
Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-
packages (from cffi>=1.10.0->rpy2) (2.21)
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.
7/dist-packages (from jinja2->rpy2) (2.0.1)
R installation on Google Colab completed

In []:

Estimated running time: 2:30 minutes approx.
Libraries needed:
ISLR for multivariate linear regression
kknn for k-nearest neighbours regression
Cubist for M5-based regression models

%%R
Installation of the necessary libraries
install.packages(c("ISLR", "kknn", "Cubist"))
print ("Installation of the R libraries for this module done")

Importing required libraries ###
require(ISLR)
require(kknn)
require(Cubist)
print ("Import of R libraries for this module completed")

R[write to console]: Installing packages into ‘/usr/local/lib/R/site-libra
ry’
(as ‘lib’ is unspecified)

R[write to console]: also installing the dependencies ‘plyr’, ‘igraph’, ‘r
eshape2’

R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/plyr
_1.8.6.tar.gz'

R[write to console]: Content type 'application/x-gzip'
R[write to console]: length 401191 bytes (391 KB)

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]:

R[write to console]: downloaded 391 KB

R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/igra
ph_1.2.11.tar.gz'

R[write to console]: Content type 'application/x-gzip'
R[write to console]: length 2398028 bytes (2.3 MB)

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]:

R[write to console]: downloaded 2.3 MB

R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/resh
ape2_1.4.4.tar.gz'

R[write to console]: Content type 'application/x-gzip'
R[write to console]: length 37307 bytes (36 KB)

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]:

R[write to console]: downloaded 36 KB

R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/ISLR
_1.4.tar.gz'

R[write to console]: Content type 'application/x-gzip'
R[write to console]: length 1756715 bytes (1.7 MB)

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]:

R[write to console]: downloaded 1.7 MB

R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/kknn
_1.3.1.tar.gz'

R[write to console]: Content type 'application/x-gzip'
R[write to console]: length 388410 bytes (379 KB)

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]:

R[write to console]: downloaded 379 KB

R[write to console]: trying URL 'https://cran.rstudio.com/src/contrib/Cubi
st_0.4.0.tar.gz'

R[write to console]: Content type 'application/x-gzip'
R[write to console]: length 1523565 bytes (1.5 MB)

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]: =

Important: if, at any time while monitoring of the capsules of this module, the following message appears
after executing a code cell UsageError: Cell magic %%R not found , you will have to run the installation of
R and the libraries previously mentioned in this section again.

R[write to console]: =
R[write to console]: =
R[write to console]: =
R[write to console]:

R[write to console]: downloaded 1.5 MB

R[write to console]:

R[write to console]:
R[write to console]: The downloaded source packages are in

‘/tmp/RtmpEBN274/downloaded_packages’
R[write to console]:
R[write to console]:

[1] "Installation of the R libraries for this module done"

R[write to console]: Loading required package: ISLR

R[write to console]: Loading required package: kknn

R[write to console]: Loading required package: Cubist

R[write to console]: Loading required package: lattice

[1] "Import of R libraries for this module completed"

6. LOADING THE DATA
Once this introductory capsule is completed, in the next capsules we will delve into details about three of the
best-known regression methods, applying them to our obesity dataset. These are:

Simple and/or multiple linear regression.
The k-nearest neighbors algorithm for regression (KNN).
The M5 regression tree (via Cubist in our case).

The lines of code required to load the obesity dataset into the R environment are shown below. These will
be used in the next capsules of this module. Keep in mind that the file we are going to read is in a table
format with a header. This is the standard format and so in our case, each column represents a variable of
the problem. The last column of the data set corresponds to the output variable we want to infer; in other
words, the output of our regression model. The first line of the data file (table header) includes the names of
all the variables separated by commas, with each name corresponding to each of the aforementioned
columns. Likewise, the remaining lines of the file (rows of the table) include numerical values separated by
commas. It is vital that this numerical information is presented in an English to match the format of the
algorithms we will use. Otherwise, the separating comma of the data could be confused with what would be
the decimal point in a normal Spanish format. Starting from the second line of the file, each line (table row)
contains the information related to one child. The ideal file type for this purpose is .CSV (comma-separated
values) because this format can be easily generated or edited in Microsoft Excel or OpenOffice Calc.

The data is available via Google Drive in a file called homa.csv. However, if we were working locally with
RStudio and R or with another data file, we would only have to change the https://drive.google
(https://drive.google) (https://drive.google (https://drive.google))... URL by adding “\:\\\” (e.g.,
“C:\Data\homa.csv\” in case of the Windows operating system). The “head()” method is not necessary but is
used to verify that the data was read correctly; it should show the column names and row numbering along
with a small portion of the data.

https://drive.google/
https://drive.google/

In []:

Estimated execution time: 2 seconds approx.

%%R
Reading
data <- read.csv(url("https://drive.google.com/uc?id=1GO2NBxYw54K6HkN-YgXbNadrLo5O6-0
u"))

Visualisation of a small part of the data
head(data)

REFERENCES
Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. An Introduction to Statistical
Learning with Applications in R Springer, 2013 (Chapter 03)
McDonald, J.H. Handbook of Biological Statistics (3rd ed.). Sparky House Publishing, Baltimore,
Maryland, 2014. Pages 190-208 in the printed version
Usando rpy2 en notebooks: https://rpy2.github.io/doc/latest/html/notebooks.html
(https://rpy2.github.io/doc/latest/html/notebooks.html)
Usando read.csv de R: https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/read.table
(https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/read.table)

ADDITIONAL REFERENCES
M.J. Gacto, J.M. Soto-Hidalgo, J. Alcalá-Fdez, and R. Alcalá (2019). Experimental Study on 164
Algorithms Available in Software Tools for Solving Standard Non-Linear Regression Problems. IEEE
Access 7, 2019, pp. 108916-108939; https://doi.org/10.1109/ACCESS.2019.2933261
(https://doi.org/10.1109/ACCESS.2019.2933261)

 Sex Age Tanner Height BMI WC TAGmgDL HDLCmgDL LDLCmgDL SBP DBP Sede
ntary
1 1 9.5 0 1.55 11.34 60.0 55 51 93 97 60 41
1.0893
2 1 8.0 0 1.15 12.40 46.3 51 70 59 90 55 43
5.6071
3 0 10.5 0 1.42 12.99 67.5 65 60 96 96 54 48
3.9048
4 0 8.1 0 1.27 13.43 53.1 41 78 100 108 46 42
9.2976
5 1 10.4 0 1.32 13.72 51.9 39 100 120 107 69 51
2.0714
6 0 10.4 0 1.29 14.02 54.9 57 76 73 87 59 45
1.2321
 Light Moderate Vigorous HOMA

1 321.5804 22.13393 3.982143 1.98
2 316.9762 48.05952 14.273810 0.87
3 337.7857 33.30952 7.988095 1.46
4 241.9762 39.67857 11.821429 1.07
5 216.0357 9.75000 2.410714 0.80
6 257.6429 36.40179 9.767857 1.35

https://rpy2.github.io/doc/latest/html/notebooks.html
https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/read.table
https://doi.org/10.1109/ACCESS.2019.2933261

MOOC Machine Learning y Big Data in Bioinformatics (2º Edition) http://abierta.ugr.es

